Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024083224> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2024083224 endingPage "858" @default.
- W2024083224 startingPage "845" @default.
- W2024083224 abstract "The rapid growth of computational power demand from scientific, business, and Web applications has led to the emergence of cloud-oriented data centers. These centers use pay-as-you-go execution environments that scale transparently to the user. Load prediction is a significant cost-optimal resource allocation and energy saving approach for a cloud computing environment. Traditional linear or nonlinear prediction models that forecast future load directly from historical information appear less effective. Load classification before prediction is necessary to improve prediction accuracy. In this paper, a novel approach is proposed to forecast the future load for cloud-oriented data centers. First, a hidden Markov model (HMM) based data clustering method is adopted to classify the cloud load. The Bayesian information criterion and Akaike information criterion are employed to automatically determine the optimal HMM model size and cluster numbers. Trained HMMs are then used to identify the most appropriate cluster that possesses the maximum likelihood for current load. With the data from this cluster, a genetic algorithm optimized Elman network is used to forecast future load. Experimental results show that our algorithm outperforms other approaches reported in previous works." @default.
- W2024083224 created "2016-06-24" @default.
- W2024083224 creator A5008974159 @default.
- W2024083224 creator A5023640343 @default.
- W2024083224 creator A5083046057 @default.
- W2024083224 date "2013-11-01" @default.
- W2024083224 modified "2023-10-13" @default.
- W2024083224 title "A mixture of HMM, GA, and Elman network for load prediction in cloud-oriented data centers" @default.
- W2024083224 cites W1968023063 @default.
- W2024083224 cites W1978520392 @default.
- W2024083224 cites W1981903823 @default.
- W2024083224 cites W2001607878 @default.
- W2024083224 cites W2010529280 @default.
- W2024083224 cites W2012753837 @default.
- W2024083224 cites W2021535663 @default.
- W2024083224 cites W2022461857 @default.
- W2024083224 cites W2027043498 @default.
- W2024083224 cites W2027262587 @default.
- W2024083224 cites W2029177847 @default.
- W2024083224 cites W2047515252 @default.
- W2024083224 cites W2058092208 @default.
- W2024083224 cites W2099600260 @default.
- W2024083224 cites W2110485445 @default.
- W2024083224 cites W2111556044 @default.
- W2024083224 cites W2115598073 @default.
- W2024083224 cites W2117014758 @default.
- W2024083224 cites W2119438912 @default.
- W2024083224 cites W2125838338 @default.
- W2024083224 cites W2158196600 @default.
- W2024083224 cites W2171068274 @default.
- W2024083224 cites W2483144311 @default.
- W2024083224 cites W2569378140 @default.
- W2024083224 doi "https://doi.org/10.1631/jzus.c1300109" @default.
- W2024083224 hasPublicationYear "2013" @default.
- W2024083224 type Work @default.
- W2024083224 sameAs 2024083224 @default.
- W2024083224 citedByCount "18" @default.
- W2024083224 countsByYear W20240832242016 @default.
- W2024083224 countsByYear W20240832242017 @default.
- W2024083224 countsByYear W20240832242018 @default.
- W2024083224 countsByYear W20240832242019 @default.
- W2024083224 countsByYear W20240832242020 @default.
- W2024083224 countsByYear W20240832242021 @default.
- W2024083224 countsByYear W20240832242022 @default.
- W2024083224 crossrefType "journal-article" @default.
- W2024083224 hasAuthorship W2024083224A5008974159 @default.
- W2024083224 hasAuthorship W2024083224A5023640343 @default.
- W2024083224 hasAuthorship W2024083224A5083046057 @default.
- W2024083224 hasConcept C111919701 @default.
- W2024083224 hasConcept C119857082 @default.
- W2024083224 hasConcept C124101348 @default.
- W2024083224 hasConcept C126674687 @default.
- W2024083224 hasConcept C154945302 @default.
- W2024083224 hasConcept C168136583 @default.
- W2024083224 hasConcept C23224414 @default.
- W2024083224 hasConcept C41008148 @default.
- W2024083224 hasConcept C73555534 @default.
- W2024083224 hasConcept C79974875 @default.
- W2024083224 hasConceptScore W2024083224C111919701 @default.
- W2024083224 hasConceptScore W2024083224C119857082 @default.
- W2024083224 hasConceptScore W2024083224C124101348 @default.
- W2024083224 hasConceptScore W2024083224C126674687 @default.
- W2024083224 hasConceptScore W2024083224C154945302 @default.
- W2024083224 hasConceptScore W2024083224C168136583 @default.
- W2024083224 hasConceptScore W2024083224C23224414 @default.
- W2024083224 hasConceptScore W2024083224C41008148 @default.
- W2024083224 hasConceptScore W2024083224C73555534 @default.
- W2024083224 hasConceptScore W2024083224C79974875 @default.
- W2024083224 hasIssue "11" @default.
- W2024083224 hasLocation W20240832241 @default.
- W2024083224 hasOpenAccess W2024083224 @default.
- W2024083224 hasPrimaryLocation W20240832241 @default.
- W2024083224 hasRelatedWork W1946191587 @default.
- W2024083224 hasRelatedWork W1998988312 @default.
- W2024083224 hasRelatedWork W2079535806 @default.
- W2024083224 hasRelatedWork W2088726129 @default.
- W2024083224 hasRelatedWork W2105284594 @default.
- W2024083224 hasRelatedWork W2509820422 @default.
- W2024083224 hasRelatedWork W2617987378 @default.
- W2024083224 hasRelatedWork W2626271282 @default.
- W2024083224 hasRelatedWork W3122388856 @default.
- W2024083224 hasRelatedWork W3187368641 @default.
- W2024083224 hasVolume "14" @default.
- W2024083224 isParatext "false" @default.
- W2024083224 isRetracted "false" @default.
- W2024083224 magId "2024083224" @default.
- W2024083224 workType "article" @default.