Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024101422> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2024101422 endingPage "238" @default.
- W2024101422 startingPage "229" @default.
- W2024101422 abstract "The problem of missing values is common in statistical analysis. One approach to deal with missing values is to delete the incomplete cases from the data set. This approach may disregard valuable information, especially in small samples. An alternative approach is to reconstruct the missing values using the information in the data set. The major purpose of this paper is to investigate how a neural network approach performs compared to statistical techniques for reconstructing missing values. The backpropagation algorithm is used as the learning method to reconstruct missing values. The results of back-propagation are compared with results from two methods, viz., (1) using averages, and (2) using iterative regression analysis, to compute missing values. Experimental results show that backpropagation consistently outperforms other methods in both the training and the test data sets, and suggest that the neural network approach is a useful tool for reconstructing missing values in multivariate analysis." @default.
- W2024101422 created "2016-06-24" @default.
- W2024101422 creator A5002419188 @default.
- W2024101422 creator A5058405202 @default.
- W2024101422 date "1996-02-01" @default.
- W2024101422 modified "2023-10-16" @default.
- W2024101422 title "Estimating Missing Values Using Neural Networks" @default.
- W2024101422 cites W1489637972 @default.
- W2024101422 cites W1491663334 @default.
- W2024101422 cites W1968182870 @default.
- W2024101422 cites W1976990135 @default.
- W2024101422 cites W1997492981 @default.
- W2024101422 cites W2014018247 @default.
- W2024101422 cites W2016207894 @default.
- W2024101422 cites W2044758663 @default.
- W2024101422 cites W2076893068 @default.
- W2024101422 cites W2090142568 @default.
- W2024101422 cites W2097529207 @default.
- W2024101422 cites W2115116459 @default.
- W2024101422 cites W2141690599 @default.
- W2024101422 cites W2154579312 @default.
- W2024101422 cites W2317938141 @default.
- W2024101422 cites W2324806494 @default.
- W2024101422 cites W3122773251 @default.
- W2024101422 cites W38009143 @default.
- W2024101422 doi "https://doi.org/10.1057/jors.1996.21" @default.
- W2024101422 hasPublicationYear "1996" @default.
- W2024101422 type Work @default.
- W2024101422 sameAs 2024101422 @default.
- W2024101422 citedByCount "91" @default.
- W2024101422 countsByYear W20241014222012 @default.
- W2024101422 countsByYear W20241014222013 @default.
- W2024101422 countsByYear W20241014222014 @default.
- W2024101422 countsByYear W20241014222015 @default.
- W2024101422 countsByYear W20241014222016 @default.
- W2024101422 countsByYear W20241014222017 @default.
- W2024101422 countsByYear W20241014222018 @default.
- W2024101422 countsByYear W20241014222019 @default.
- W2024101422 countsByYear W20241014222020 @default.
- W2024101422 countsByYear W20241014222021 @default.
- W2024101422 countsByYear W20241014222022 @default.
- W2024101422 countsByYear W20241014222023 @default.
- W2024101422 crossrefType "journal-article" @default.
- W2024101422 hasAuthorship W2024101422A5002419188 @default.
- W2024101422 hasAuthorship W2024101422A5058405202 @default.
- W2024101422 hasConcept C105795698 @default.
- W2024101422 hasConcept C119857082 @default.
- W2024101422 hasConcept C124101348 @default.
- W2024101422 hasConcept C153180895 @default.
- W2024101422 hasConcept C154945302 @default.
- W2024101422 hasConcept C155032097 @default.
- W2024101422 hasConcept C161584116 @default.
- W2024101422 hasConcept C177264268 @default.
- W2024101422 hasConcept C199360897 @default.
- W2024101422 hasConcept C33923547 @default.
- W2024101422 hasConcept C41008148 @default.
- W2024101422 hasConcept C50644808 @default.
- W2024101422 hasConcept C58489278 @default.
- W2024101422 hasConcept C83546350 @default.
- W2024101422 hasConcept C9357733 @default.
- W2024101422 hasConceptScore W2024101422C105795698 @default.
- W2024101422 hasConceptScore W2024101422C119857082 @default.
- W2024101422 hasConceptScore W2024101422C124101348 @default.
- W2024101422 hasConceptScore W2024101422C153180895 @default.
- W2024101422 hasConceptScore W2024101422C154945302 @default.
- W2024101422 hasConceptScore W2024101422C155032097 @default.
- W2024101422 hasConceptScore W2024101422C161584116 @default.
- W2024101422 hasConceptScore W2024101422C177264268 @default.
- W2024101422 hasConceptScore W2024101422C199360897 @default.
- W2024101422 hasConceptScore W2024101422C33923547 @default.
- W2024101422 hasConceptScore W2024101422C41008148 @default.
- W2024101422 hasConceptScore W2024101422C50644808 @default.
- W2024101422 hasConceptScore W2024101422C58489278 @default.
- W2024101422 hasConceptScore W2024101422C83546350 @default.
- W2024101422 hasConceptScore W2024101422C9357733 @default.
- W2024101422 hasIssue "2" @default.
- W2024101422 hasLocation W20241014221 @default.
- W2024101422 hasOpenAccess W2024101422 @default.
- W2024101422 hasPrimaryLocation W20241014221 @default.
- W2024101422 hasRelatedWork W2031127365 @default.
- W2024101422 hasRelatedWork W2146208087 @default.
- W2024101422 hasRelatedWork W2250140425 @default.
- W2024101422 hasRelatedWork W2600618515 @default.
- W2024101422 hasRelatedWork W2786479229 @default.
- W2024101422 hasRelatedWork W2885069571 @default.
- W2024101422 hasRelatedWork W2886732604 @default.
- W2024101422 hasRelatedWork W3004657493 @default.
- W2024101422 hasRelatedWork W314306847 @default.
- W2024101422 hasRelatedWork W2165189522 @default.
- W2024101422 hasVolume "47" @default.
- W2024101422 isParatext "false" @default.
- W2024101422 isRetracted "false" @default.
- W2024101422 magId "2024101422" @default.
- W2024101422 workType "article" @default.