Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024122305> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2024122305 abstract "This paper constructs improved estimators of the means in the Gaussian saturated one-way layout with an ordinal factor. The least squares estimator for the mean vector in this saturated model is usually inadmissible. The hybrid shrinkage estimators of this paper exploit the possibility of slow variation in the dependence of the means on the ordered factor levels but do not assume it and respond well to faster variation if present. To motivate the development, candidate penalized least squares (PLS) estimators for the mean vector of a one-way layout are represented as shrinkage estimators relative to the penalty basis for the regression space. This canonical representation suggests further classes of candidate estimators for the unknown means: monotone shrinkage (MS) estimators or soft-thresholding (ST) estimators or, most generally, hybrid shrinkage (HS) estimators that combine the preceding two strategies. Adaptation selects the estimator within a candidate class that minimizes estimated risk. Under the Gaussian saturated one-way layout model, such adaptive estimators minimize risk asymptotically over the class of candidate estimators as the number of factor levels tends to infinity. Thereby, adaptive HS estimators asymptotically dominate adaptive MS and adaptive ST estimators as well as the least squares estimator. Local annihilators of polynomials, among them difference operators, generate penalty bases suitable for a range of numerical examples. In case studies, adaptive HS estimators recover high frequency details in the mean vector more reliably than PLS or MS estimators and low frequency details more reliably than ST estimators." @default.
- W2024122305 created "2016-06-24" @default.
- W2024122305 creator A5071437381 @default.
- W2024122305 date "2004-12-01" @default.
- W2024122305 modified "2023-10-18" @default.
- W2024122305 title "Hybrid shrinkage estimators using penalty bases for the ordinal one-way layout" @default.
- W2024122305 cites W1497683195 @default.
- W2024122305 cites W1584444527 @default.
- W2024122305 cites W1598266570 @default.
- W2024122305 cites W1983624576 @default.
- W2024122305 cites W1998655812 @default.
- W2024122305 cites W2036767512 @default.
- W2024122305 cites W2054640142 @default.
- W2024122305 cites W2064674496 @default.
- W2024122305 cites W2079356438 @default.
- W2024122305 cites W2103360209 @default.
- W2024122305 cites W2115090310 @default.
- W2024122305 cites W2144593831 @default.
- W2024122305 cites W2319794630 @default.
- W2024122305 cites W2795929191 @default.
- W2024122305 cites W2798056406 @default.
- W2024122305 cites W47132403 @default.
- W2024122305 cites W2224154641 @default.
- W2024122305 doi "https://doi.org/10.1214/009053604000000652" @default.
- W2024122305 hasPublicationYear "2004" @default.
- W2024122305 type Work @default.
- W2024122305 sameAs 2024122305 @default.
- W2024122305 citedByCount "2" @default.
- W2024122305 crossrefType "journal-article" @default.
- W2024122305 hasAuthorship W2024122305A5071437381 @default.
- W2024122305 hasBestOaLocation W20241223051 @default.
- W2024122305 hasConcept C105795698 @default.
- W2024122305 hasConcept C11413529 @default.
- W2024122305 hasConcept C121332964 @default.
- W2024122305 hasConcept C126255220 @default.
- W2024122305 hasConcept C143791395 @default.
- W2024122305 hasConcept C163716315 @default.
- W2024122305 hasConcept C185429906 @default.
- W2024122305 hasConcept C28826006 @default.
- W2024122305 hasConcept C33923547 @default.
- W2024122305 hasConcept C62520636 @default.
- W2024122305 hasConcept C68805675 @default.
- W2024122305 hasConceptScore W2024122305C105795698 @default.
- W2024122305 hasConceptScore W2024122305C11413529 @default.
- W2024122305 hasConceptScore W2024122305C121332964 @default.
- W2024122305 hasConceptScore W2024122305C126255220 @default.
- W2024122305 hasConceptScore W2024122305C143791395 @default.
- W2024122305 hasConceptScore W2024122305C163716315 @default.
- W2024122305 hasConceptScore W2024122305C185429906 @default.
- W2024122305 hasConceptScore W2024122305C28826006 @default.
- W2024122305 hasConceptScore W2024122305C33923547 @default.
- W2024122305 hasConceptScore W2024122305C62520636 @default.
- W2024122305 hasConceptScore W2024122305C68805675 @default.
- W2024122305 hasLocation W20241223051 @default.
- W2024122305 hasOpenAccess W2024122305 @default.
- W2024122305 hasPrimaryLocation W20241223051 @default.
- W2024122305 hasRelatedWork W2023060082 @default.
- W2024122305 hasRelatedWork W2052388428 @default.
- W2024122305 hasRelatedWork W2083491956 @default.
- W2024122305 hasRelatedWork W2333053580 @default.
- W2024122305 hasRelatedWork W2555879011 @default.
- W2024122305 hasRelatedWork W2963953154 @default.
- W2024122305 hasRelatedWork W4243466924 @default.
- W2024122305 hasRelatedWork W4248032484 @default.
- W2024122305 hasRelatedWork W4250590348 @default.
- W2024122305 hasRelatedWork W2527090382 @default.
- W2024122305 isParatext "false" @default.
- W2024122305 isRetracted "false" @default.
- W2024122305 magId "2024122305" @default.
- W2024122305 workType "article" @default.