Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024132361> ?p ?o ?g. }
- W2024132361 endingPage "12050" @default.
- W2024132361 startingPage "12041" @default.
- W2024132361 abstract "The diffusion coefficients of ions and of uncharged solutes in aqueous solution at 25 °C and at infinite dilution are studied by computer simulation using the SPC/E model for water and solute−water potentials employed in previous work (Koneshan, S.; et al. J. Phys. Chem. 1998, 102, 4193−4204). The mobilities of the ions calculated from the diffusion coefficients pass through a maximum as a function of ion size, with distinct curves and maximums for positive and negative ions in qualitative agreement with experiment. We aim to understand this at a microscopic level in terms of theoretical studies of the friction coefficient ζ, which is related to diffusion coefficient by the Stokes−Einstein relation. This provides one method of calculating ζ, but it can also be obtained in principle from the random force autocorrelation function which is the starting point of molecular theories of the friction. Molecular and continuum theories divide the friction into hydrodynamic and dielectric components calculated in different ways on the basis of certain approximations that are tested in this paper. The two methods of determining ζ give consistent results in simulations of large ions or uncharged solutes but differ by a factor of nearly 1.5 for smaller ions. This is attributed to the assumption, in our simulations and in some molecular theories, that the random force autocorrelation function of a moving ion can be approximated by the total force autocorrelation function of a fixed ion but the observed trends in ζ with ion size are unchanged. Three different separations of the force autocorrelation function are studied; namely, partitioning this into (a) electrostatic and Lennard-Jones forces (b) hard and soft forces, and (c) forces arising from the first shell and more distant forces. The cross-terms are found to be significant in all cases, and the contributions of the sum of the soft term and the cross-terms, which are of opposite sign, to the total friction in the hard−soft separation, is small for all the ions (large and small). This suggests that dielectric friction calculated using this separation, with the neglect of cross-terms, is less accurate than previously supposed and the success of these theories is due to a cancellation of errors in the approximations. This is supported by recent a theoretical study of Chong and Hirata (Chong, C.; Hirata, F. J. Chem. Phys. 1998, 108, 739) which evaluates the cross-terms. A phenomenological theory due to Chen and Adelman (Chen, J. H.; Adelman, S. A. J. Chem. Phys. 1980, 72, 2819) calculates the friction in terms of effective hydrodynamic and dielectric radii for the ions (cf. solventberg picture) and predicts low dielectric friction for large ions and small strongly solvated ions. This also agrees qualitatively with our simulations but a complete molecular theory, applicable to positive and negative ions in hydrogen-bonded solvents such as water, has yet to be developed." @default.
- W2024132361 created "2016-06-24" @default.
- W2024132361 creator A5054769976 @default.
- W2024132361 creator A5084066494 @default.
- W2024132361 creator A5084443812 @default.
- W2024132361 date "1998-11-01" @default.
- W2024132361 modified "2023-10-17" @default.
- W2024132361 title "Friction Coefficients of Ions in Aqueous Solution at 25 °C" @default.
- W2024132361 cites W1501812329 @default.
- W2024132361 cites W1651894557 @default.
- W2024132361 cites W1965484091 @default.
- W2024132361 cites W1970201026 @default.
- W2024132361 cites W1971017062 @default.
- W2024132361 cites W1971589141 @default.
- W2024132361 cites W1976369642 @default.
- W2024132361 cites W1980958035 @default.
- W2024132361 cites W1980995972 @default.
- W2024132361 cites W1986113676 @default.
- W2024132361 cites W1987928598 @default.
- W2024132361 cites W2001633912 @default.
- W2024132361 cites W2004514958 @default.
- W2024132361 cites W2016426564 @default.
- W2024132361 cites W2019524706 @default.
- W2024132361 cites W2052737939 @default.
- W2024132361 cites W2058073387 @default.
- W2024132361 cites W2069377611 @default.
- W2024132361 cites W2081192607 @default.
- W2024132361 cites W2081948633 @default.
- W2024132361 cites W2084128514 @default.
- W2024132361 cites W2086009682 @default.
- W2024132361 cites W2086145503 @default.
- W2024132361 cites W2086767269 @default.
- W2024132361 cites W2089021931 @default.
- W2024132361 cites W2090604699 @default.
- W2024132361 cites W2139567539 @default.
- W2024132361 cites W2174711518 @default.
- W2024132361 cites W2485795334 @default.
- W2024132361 cites W2950957399 @default.
- W2024132361 cites W4234365386 @default.
- W2024132361 cites W4239950509 @default.
- W2024132361 cites W2020183003 @default.
- W2024132361 doi "https://doi.org/10.1021/ja981997x" @default.
- W2024132361 hasPublicationYear "1998" @default.
- W2024132361 type Work @default.
- W2024132361 sameAs 2024132361 @default.
- W2024132361 citedByCount "78" @default.
- W2024132361 countsByYear W20241323612012 @default.
- W2024132361 countsByYear W20241323612013 @default.
- W2024132361 countsByYear W20241323612014 @default.
- W2024132361 countsByYear W20241323612015 @default.
- W2024132361 countsByYear W20241323612016 @default.
- W2024132361 countsByYear W20241323612017 @default.
- W2024132361 countsByYear W20241323612018 @default.
- W2024132361 countsByYear W20241323612019 @default.
- W2024132361 countsByYear W20241323612020 @default.
- W2024132361 countsByYear W20241323612021 @default.
- W2024132361 countsByYear W20241323612023 @default.
- W2024132361 crossrefType "journal-article" @default.
- W2024132361 hasAuthorship W2024132361A5054769976 @default.
- W2024132361 hasAuthorship W2024132361A5084066494 @default.
- W2024132361 hasAuthorship W2024132361A5084443812 @default.
- W2024132361 hasConcept C105795698 @default.
- W2024132361 hasConcept C121332964 @default.
- W2024132361 hasConcept C121864883 @default.
- W2024132361 hasConcept C14036430 @default.
- W2024132361 hasConcept C144133560 @default.
- W2024132361 hasConcept C145148216 @default.
- W2024132361 hasConcept C147597530 @default.
- W2024132361 hasConcept C147789679 @default.
- W2024132361 hasConcept C159467904 @default.
- W2024132361 hasConcept C162853370 @default.
- W2024132361 hasConcept C178790620 @default.
- W2024132361 hasConcept C184651966 @default.
- W2024132361 hasConcept C185592680 @default.
- W2024132361 hasConcept C18762648 @default.
- W2024132361 hasConcept C192239200 @default.
- W2024132361 hasConcept C2775906791 @default.
- W2024132361 hasConcept C33923547 @default.
- W2024132361 hasConcept C5297727 @default.
- W2024132361 hasConcept C59593255 @default.
- W2024132361 hasConcept C69357855 @default.
- W2024132361 hasConcept C78458016 @default.
- W2024132361 hasConcept C86803240 @default.
- W2024132361 hasConcept C96618451 @default.
- W2024132361 hasConcept C97355855 @default.
- W2024132361 hasConceptScore W2024132361C105795698 @default.
- W2024132361 hasConceptScore W2024132361C121332964 @default.
- W2024132361 hasConceptScore W2024132361C121864883 @default.
- W2024132361 hasConceptScore W2024132361C14036430 @default.
- W2024132361 hasConceptScore W2024132361C144133560 @default.
- W2024132361 hasConceptScore W2024132361C145148216 @default.
- W2024132361 hasConceptScore W2024132361C147597530 @default.
- W2024132361 hasConceptScore W2024132361C147789679 @default.
- W2024132361 hasConceptScore W2024132361C159467904 @default.
- W2024132361 hasConceptScore W2024132361C162853370 @default.
- W2024132361 hasConceptScore W2024132361C178790620 @default.
- W2024132361 hasConceptScore W2024132361C184651966 @default.
- W2024132361 hasConceptScore W2024132361C185592680 @default.