Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024137681> ?p ?o ?g. }
- W2024137681 endingPage "24" @default.
- W2024137681 startingPage "8" @default.
- W2024137681 abstract "The Danish Meteorological Institute operates a radar network consisting of five C‐band Doppler radars. Quantitative precipitation estimation (QPE) using radar data is performed on a daily basis. Radar QPE is considered to have the potential to significantly improve the spatial representation of precipitation compared with rain‐gauge‐based methods, thus providing the basis for better water resources assessments. The radar QPE algorithm called ARNE is a distance‐dependent areal estimation method that merges radar data with ground surface observations. The method was applied to the Skjern River catchment in western Denmark where alternative precipitation estimates were also used as input to an integrated hydrologic model. The hydrologic responses from the model were analyzed by comparing radar‐ and ground‐based precipitation input scenarios. Results showed that radar QPE products are able to generate reliable simulations of stream flow and water balance. The potential of using radar‐based precipitation was found to be especially high at a smaller scale, where the impact of spatial resolution was evident from the stream discharge results. Also, groundwater recharge was shown to be sensitive to the rainfall product selected. Radar QPE appears to have unprecedented potential in optimizing precipitation input to distributed hydrologic models and thus model predictions." @default.
- W2024137681 created "2016-06-24" @default.
- W2024137681 creator A5007328667 @default.
- W2024137681 creator A5028536360 @default.
- W2024137681 creator A5037802332 @default.
- W2024137681 creator A5048795657 @default.
- W2024137681 creator A5071315423 @default.
- W2024137681 date "2011-02-01" @default.
- W2024137681 modified "2023-10-16" @default.
- W2024137681 title "An Operational Weather Radar–Based Quantitative Precipitation Estimation and its Application in Catchment Water Resources Modeling" @default.
- W2024137681 cites W1567711608 @default.
- W2024137681 cites W1965568221 @default.
- W2024137681 cites W1966307270 @default.
- W2024137681 cites W1967313874 @default.
- W2024137681 cites W1972449566 @default.
- W2024137681 cites W1977058536 @default.
- W2024137681 cites W1980284466 @default.
- W2024137681 cites W1980503561 @default.
- W2024137681 cites W1985678599 @default.
- W2024137681 cites W1997294768 @default.
- W2024137681 cites W1997802275 @default.
- W2024137681 cites W1999064163 @default.
- W2024137681 cites W2007844954 @default.
- W2024137681 cites W2010438871 @default.
- W2024137681 cites W2010560793 @default.
- W2024137681 cites W2012328721 @default.
- W2024137681 cites W2015421666 @default.
- W2024137681 cites W2016443842 @default.
- W2024137681 cites W2017461955 @default.
- W2024137681 cites W2018561789 @default.
- W2024137681 cites W2018617380 @default.
- W2024137681 cites W2021031127 @default.
- W2024137681 cites W2022631575 @default.
- W2024137681 cites W2026632718 @default.
- W2024137681 cites W2030134440 @default.
- W2024137681 cites W2030718652 @default.
- W2024137681 cites W2033496451 @default.
- W2024137681 cites W2038107219 @default.
- W2024137681 cites W2043383361 @default.
- W2024137681 cites W2043929744 @default.
- W2024137681 cites W2044727817 @default.
- W2024137681 cites W2049933794 @default.
- W2024137681 cites W2052767937 @default.
- W2024137681 cites W2059107849 @default.
- W2024137681 cites W2071148578 @default.
- W2024137681 cites W2073933889 @default.
- W2024137681 cites W2077276530 @default.
- W2024137681 cites W2082864892 @default.
- W2024137681 cites W2087716733 @default.
- W2024137681 cites W2087883388 @default.
- W2024137681 cites W2091037695 @default.
- W2024137681 cites W2093934825 @default.
- W2024137681 cites W2100022531 @default.
- W2024137681 cites W2104915231 @default.
- W2024137681 cites W2108087676 @default.
- W2024137681 cites W2108429278 @default.
- W2024137681 cites W2118905223 @default.
- W2024137681 cites W2135864221 @default.
- W2024137681 cites W2137438804 @default.
- W2024137681 cites W2140817782 @default.
- W2024137681 cites W2142140026 @default.
- W2024137681 cites W2146460383 @default.
- W2024137681 cites W2146783567 @default.
- W2024137681 cites W2149071528 @default.
- W2024137681 cites W2163269972 @default.
- W2024137681 cites W2166452583 @default.
- W2024137681 cites W2171704845 @default.
- W2024137681 cites W2173031829 @default.
- W2024137681 cites W2173579896 @default.
- W2024137681 cites W2174421029 @default.
- W2024137681 cites W2177099584 @default.
- W2024137681 cites W2180416900 @default.
- W2024137681 cites W2284599559 @default.
- W2024137681 cites W2284762259 @default.
- W2024137681 cites W2326288357 @default.
- W2024137681 doi "https://doi.org/10.2136/vzj2010.0034" @default.
- W2024137681 hasPublicationYear "2011" @default.
- W2024137681 type Work @default.
- W2024137681 sameAs 2024137681 @default.
- W2024137681 citedByCount "21" @default.
- W2024137681 countsByYear W20241376812012 @default.
- W2024137681 countsByYear W20241376812013 @default.
- W2024137681 countsByYear W20241376812015 @default.
- W2024137681 countsByYear W20241376812016 @default.
- W2024137681 countsByYear W20241376812017 @default.
- W2024137681 countsByYear W20241376812018 @default.
- W2024137681 countsByYear W20241376812021 @default.
- W2024137681 countsByYear W20241376812022 @default.
- W2024137681 countsByYear W20241376812023 @default.
- W2024137681 crossrefType "journal-article" @default.
- W2024137681 hasAuthorship W2024137681A5007328667 @default.
- W2024137681 hasAuthorship W2024137681A5028536360 @default.
- W2024137681 hasAuthorship W2024137681A5037802332 @default.
- W2024137681 hasAuthorship W2024137681A5048795657 @default.
- W2024137681 hasAuthorship W2024137681A5071315423 @default.
- W2024137681 hasBestOaLocation W20241376811 @default.
- W2024137681 hasConcept C107054158 @default.
- W2024137681 hasConcept C120961793 @default.