Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024147473> ?p ?o ?g. }
- W2024147473 endingPage "360" @default.
- W2024147473 startingPage "350" @default.
- W2024147473 abstract "Ecological niche modeling (ENM) is an effective tool for providing innovative insights to questions in evolution, ecology and conservation. As environmental datasets accumulate, modelers need to evaluate the relative merit of different types of data for ENM. We used three alternative environmental data sets: climatic data, remote‐sensing data (Normalized Difference Vegetation Index), and elevation data, to model the distribution of six bird species of the genus Grallaria in the Ecuadorian Andes. We assessed the performance of models created with each environmental data set and all possible combinations by comparing the geographic predictions of our models with detailed maps developed by expert ornithologists. Results varied depending on the specific measure of performance. Models including climate variables performed relatively well across most measures, whereas models using only NDVI performed poorly. Elevation based models were relatively good at predicting most sites of expected occurrence but showed a high over‐prediction error. Combinations of data sets usually increased the performance of the models, but not significantly. Our results highlight the importance of including climatic variables in ENM and the simultaneous use of various data sets when possible. This strategy attenuates the effects of specific variables that decrease model performance. Remote‐sensing data, such as NDVI, should be used with caution in topographically complex regions with heavy cloud‐cover. Nonetheless, remote‐sensing data have the potential to improve ENM. Finally, we suggest a priori designation of modeling purposes to define specific performance measures accordingly." @default.
- W2024147473 created "2016-06-24" @default.
- W2024147473 creator A5025128490 @default.
- W2024147473 creator A5054824197 @default.
- W2024147473 creator A5076285639 @default.
- W2024147473 date "2004-05-14" @default.
- W2024147473 modified "2023-10-17" @default.
- W2024147473 title "Evaluating alternative data sets for ecological niche models of birds in the Andes" @default.
- W2024147473 cites W1544753269 @default.
- W2024147473 cites W1552647955 @default.
- W2024147473 cites W1964334873 @default.
- W2024147473 cites W1969555507 @default.
- W2024147473 cites W1972082227 @default.
- W2024147473 cites W1972486277 @default.
- W2024147473 cites W1974047452 @default.
- W2024147473 cites W1985618776 @default.
- W2024147473 cites W2006214772 @default.
- W2024147473 cites W2029961512 @default.
- W2024147473 cites W2036346930 @default.
- W2024147473 cites W2036706101 @default.
- W2024147473 cites W2037223925 @default.
- W2024147473 cites W2051650517 @default.
- W2024147473 cites W2065769575 @default.
- W2024147473 cites W2076343164 @default.
- W2024147473 cites W2077822176 @default.
- W2024147473 cites W2081467449 @default.
- W2024147473 cites W2085282193 @default.
- W2024147473 cites W2092811392 @default.
- W2024147473 cites W2092976254 @default.
- W2024147473 cites W2115268776 @default.
- W2024147473 cites W2120160157 @default.
- W2024147473 cites W2133752903 @default.
- W2024147473 cites W2134136604 @default.
- W2024147473 cites W2164777277 @default.
- W2024147473 cites W2169480322 @default.
- W2024147473 cites W2169600757 @default.
- W2024147473 cites W2170473141 @default.
- W2024147473 cites W2179545855 @default.
- W2024147473 cites W2319489223 @default.
- W2024147473 doi "https://doi.org/10.1111/j.0906-7590.2004.03822.x" @default.
- W2024147473 hasPublicationYear "2004" @default.
- W2024147473 type Work @default.
- W2024147473 sameAs 2024147473 @default.
- W2024147473 citedByCount "98" @default.
- W2024147473 countsByYear W20241474732012 @default.
- W2024147473 countsByYear W20241474732013 @default.
- W2024147473 countsByYear W20241474732014 @default.
- W2024147473 countsByYear W20241474732015 @default.
- W2024147473 countsByYear W20241474732016 @default.
- W2024147473 countsByYear W20241474732017 @default.
- W2024147473 countsByYear W20241474732018 @default.
- W2024147473 countsByYear W20241474732019 @default.
- W2024147473 countsByYear W20241474732020 @default.
- W2024147473 countsByYear W20241474732021 @default.
- W2024147473 countsByYear W20241474732022 @default.
- W2024147473 countsByYear W20241474732023 @default.
- W2024147473 crossrefType "journal-article" @default.
- W2024147473 hasAuthorship W2024147473A5025128490 @default.
- W2024147473 hasAuthorship W2024147473A5054824197 @default.
- W2024147473 hasAuthorship W2024147473A5076285639 @default.
- W2024147473 hasConcept C102715595 @default.
- W2024147473 hasConcept C103215972 @default.
- W2024147473 hasConcept C119857082 @default.
- W2024147473 hasConcept C132124917 @default.
- W2024147473 hasConcept C132651083 @default.
- W2024147473 hasConcept C153991713 @default.
- W2024147473 hasConcept C1549246 @default.
- W2024147473 hasConcept C154945302 @default.
- W2024147473 hasConcept C185933670 @default.
- W2024147473 hasConcept C18903297 @default.
- W2024147473 hasConcept C205649164 @default.
- W2024147473 hasConcept C2524010 @default.
- W2024147473 hasConcept C2776356880 @default.
- W2024147473 hasConcept C33923547 @default.
- W2024147473 hasConcept C37054046 @default.
- W2024147473 hasConcept C39432304 @default.
- W2024147473 hasConcept C41008148 @default.
- W2024147473 hasConcept C45804977 @default.
- W2024147473 hasConcept C58489278 @default.
- W2024147473 hasConcept C86803240 @default.
- W2024147473 hasConceptScore W2024147473C102715595 @default.
- W2024147473 hasConceptScore W2024147473C103215972 @default.
- W2024147473 hasConceptScore W2024147473C119857082 @default.
- W2024147473 hasConceptScore W2024147473C132124917 @default.
- W2024147473 hasConceptScore W2024147473C132651083 @default.
- W2024147473 hasConceptScore W2024147473C153991713 @default.
- W2024147473 hasConceptScore W2024147473C1549246 @default.
- W2024147473 hasConceptScore W2024147473C154945302 @default.
- W2024147473 hasConceptScore W2024147473C185933670 @default.
- W2024147473 hasConceptScore W2024147473C18903297 @default.
- W2024147473 hasConceptScore W2024147473C205649164 @default.
- W2024147473 hasConceptScore W2024147473C2524010 @default.
- W2024147473 hasConceptScore W2024147473C2776356880 @default.
- W2024147473 hasConceptScore W2024147473C33923547 @default.
- W2024147473 hasConceptScore W2024147473C37054046 @default.
- W2024147473 hasConceptScore W2024147473C39432304 @default.
- W2024147473 hasConceptScore W2024147473C41008148 @default.
- W2024147473 hasConceptScore W2024147473C45804977 @default.