Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024150602> ?p ?o ?g. }
- W2024150602 endingPage "233" @default.
- W2024150602 startingPage "217" @default.
- W2024150602 abstract "During the past decades the effect of glacioisostatic adjustment has received much attention. However, the response of salt structures to ice-sheet loading and unloading is poorly understood. Our study aims to test conceptual models of the interaction between ice-sheet loading and salt structures by finite-element modelling. The results are discussed with regard to their implications for ice-marginal and subglacial processes. Our models consist of 2D plane-strain cross-sections, which represent simplified geological cross-sections from the Central European Basin System. The model layers represent (i) sedimentary rocks of elastoplastic rheology, (ii) a viscoelastic diapir and layer of salt and (iii) an elastoplastic basement. On top of the model, a temporarily variable pressure simulates the advance and retreat of an ice sheet. The durations of the individual loading phases were defined to resemble the durations of the Pleistocene ice advances in northern central Europe. The geometry and rheology of the model layers and the magnitude, spatial distribution and timing of ice-sheet loading were systematically varied to detect the controlling factors. All simulations indicate that salt structures respond to ice-sheet loading. An ice advance towards the diapir causes salt flow from the source layer below the ice sheet towards the diapir, resulting in an uplift of up to +4 m. The diapir continues to rise as long as the load is applied to the source layer but not to the crest of the diapir. When the diapir is transgressed by the ice sheet the diapir is pushed down (up to −36 m) as long as load is applied to the crest of the diapir. During and after ice unloading large parts of the displacement are compensated by a reversal of the salt flow. Plastic deformation of the overburden is restricted to the area immediately above the salt diapir. The displacements after unloading range between −3.1 and +2.7 m. Larger displacements are observed in models with deep-rooted diapirs, thicker ice sheets, longer duration of the loading phase, thicker salt source layers and lower viscosity of the salt. The rise or fall of diapirs triggered or amplified by ice-sheet loading are likely to affect glacigenic deformation, erosion and deposition above the diapir and within the rim synclines. Ice-load induced uplift in front of an ice sheet will provide favourable conditions for the formation of push moraines, for example by creating a topographic obstacle and inclining potential detachments. Subglacial subsidence of salt structures will enhance erosion by providing a preferential drainage pathway and fracturing of the overburden of the salt structure and thereby contribute to the incision of tunnel valleys. However, the resulting displacements are probably too low to have a marked effect on the advance or retreat pattern of the ice sheets." @default.
- W2024150602 created "2016-06-24" @default.
- W2024150602 creator A5000471453 @default.
- W2024150602 creator A5040861368 @default.
- W2024150602 creator A5080169685 @default.
- W2024150602 creator A5083744493 @default.
- W2024150602 date "2014-10-01" @default.
- W2024150602 modified "2023-09-25" @default.
- W2024150602 title "Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes" @default.
- W2024150602 cites W1561410542 @default.
- W2024150602 cites W1629846461 @default.
- W2024150602 cites W1966020058 @default.
- W2024150602 cites W1973168067 @default.
- W2024150602 cites W1976578491 @default.
- W2024150602 cites W1977476668 @default.
- W2024150602 cites W1980230884 @default.
- W2024150602 cites W1981942264 @default.
- W2024150602 cites W1982752910 @default.
- W2024150602 cites W1986192312 @default.
- W2024150602 cites W1990836088 @default.
- W2024150602 cites W1992174649 @default.
- W2024150602 cites W1996996518 @default.
- W2024150602 cites W2003438421 @default.
- W2024150602 cites W2005527884 @default.
- W2024150602 cites W2007728421 @default.
- W2024150602 cites W2009463099 @default.
- W2024150602 cites W2010136721 @default.
- W2024150602 cites W2011732552 @default.
- W2024150602 cites W2016254856 @default.
- W2024150602 cites W2019195926 @default.
- W2024150602 cites W2024201962 @default.
- W2024150602 cites W2026655386 @default.
- W2024150602 cites W2027141240 @default.
- W2024150602 cites W2027433504 @default.
- W2024150602 cites W2031921059 @default.
- W2024150602 cites W2032123209 @default.
- W2024150602 cites W2035212488 @default.
- W2024150602 cites W2038270595 @default.
- W2024150602 cites W2039487010 @default.
- W2024150602 cites W2040803722 @default.
- W2024150602 cites W2043816699 @default.
- W2024150602 cites W2045290216 @default.
- W2024150602 cites W2049719154 @default.
- W2024150602 cites W2054356907 @default.
- W2024150602 cites W2056432009 @default.
- W2024150602 cites W2056923231 @default.
- W2024150602 cites W2059413201 @default.
- W2024150602 cites W2062456917 @default.
- W2024150602 cites W2063321908 @default.
- W2024150602 cites W2063325308 @default.
- W2024150602 cites W2068768806 @default.
- W2024150602 cites W2071108849 @default.
- W2024150602 cites W2075081175 @default.
- W2024150602 cites W2075371775 @default.
- W2024150602 cites W2080682851 @default.
- W2024150602 cites W2081089014 @default.
- W2024150602 cites W2084322242 @default.
- W2024150602 cites W2085750477 @default.
- W2024150602 cites W2089441856 @default.
- W2024150602 cites W2098754950 @default.
- W2024150602 cites W2099550415 @default.
- W2024150602 cites W2099614110 @default.
- W2024150602 cites W2101933158 @default.
- W2024150602 cites W2104828942 @default.
- W2024150602 cites W2109294766 @default.
- W2024150602 cites W2112895802 @default.
- W2024150602 cites W2117032570 @default.
- W2024150602 cites W2119205759 @default.
- W2024150602 cites W2120777186 @default.
- W2024150602 cites W2127388617 @default.
- W2024150602 cites W2156975663 @default.
- W2024150602 cites W2158918602 @default.
- W2024150602 cites W2495273839 @default.
- W2024150602 doi "https://doi.org/10.1016/j.quascirev.2014.07.022" @default.
- W2024150602 hasPublicationYear "2014" @default.
- W2024150602 type Work @default.
- W2024150602 sameAs 2024150602 @default.
- W2024150602 citedByCount "22" @default.
- W2024150602 countsByYear W20241506022016 @default.
- W2024150602 countsByYear W20241506022017 @default.
- W2024150602 countsByYear W20241506022018 @default.
- W2024150602 countsByYear W20241506022019 @default.
- W2024150602 countsByYear W20241506022020 @default.
- W2024150602 countsByYear W20241506022021 @default.
- W2024150602 countsByYear W20241506022022 @default.
- W2024150602 countsByYear W20241506022023 @default.
- W2024150602 crossrefType "journal-article" @default.
- W2024150602 hasAuthorship W2024150602A5000471453 @default.
- W2024150602 hasAuthorship W2024150602A5040861368 @default.
- W2024150602 hasAuthorship W2024150602A5080169685 @default.
- W2024150602 hasAuthorship W2024150602A5083744493 @default.
- W2024150602 hasConcept C109007969 @default.
- W2024150602 hasConcept C114793014 @default.
- W2024150602 hasConcept C123750103 @default.
- W2024150602 hasConcept C127313418 @default.
- W2024150602 hasConcept C136894858 @default.
- W2024150602 hasConcept C1721004 @default.
- W2024150602 hasConcept C197435368 @default.