Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024152120> ?p ?o ?g. }
- W2024152120 abstract "Trauma has become the leading cause of death in day to day life. Every year millions of people die and many more are handicapped due to various types of accidents caused by Trauma and many people become handicapped for the rest of their lives. It is necessary to develop a tool for predicting and preventing trauma. Reducing mortality rate and increasing the Health awareness is the aim. We have used the data mining process, to extract the useful data from large datasets. Feature subset selection is of immense importance in the field of data mining. The increased dimensionality of data makes testing and training of general classification method difficult. Mining on the reduced set of attributes reduces computation time and also helps to make the patterns easier to understand. The CFS approach for feature selection is proposed. As a part of feature selection step we used filter approach algorithm as random search technique for subset generation, wrapped with different classifiers/ induction algorithm namely decision tree C 4.5, Naive Bayes, as subset evaluating mechanism on standard datasets. It is mandatory to obtain ethical and legal clearance from regional as well as Institutional Ethics Review Board (IERB), before using data mining tools in health care research. We got Ethical clearance from BGS Hospital for using the datasets. These datasets were gathered from the patient files which were recorded in the medical record section of the BGS Hospital Bangalore. Further the relevant attributes identified by proposed filter are validated using classifiers. Experimental results illustrate, employing feature subset selection using proposed filter approach has enhanced classification accuracy. Applying [DM ] techniques to the data brings about very interesting and valuable results. It is concluded that in this case, comparing the result of evaluating the models on test set, decision tree works better than NaiveBayes. In this paper, we have also used WEKA Tool for creating the models." @default.
- W2024152120 created "2016-06-24" @default.
- W2024152120 creator A5008219046 @default.
- W2024152120 creator A5069830695 @default.
- W2024152120 date "2013-04-01" @default.
- W2024152120 modified "2023-09-24" @default.
- W2024152120 title "Data Preparation by CFS: An Essential Approach for Decision Making Using C 4.5 for Medical Data Mining" @default.
- W2024152120 cites W1483135265 @default.
- W2024152120 cites W1489725718 @default.
- W2024152120 cites W1495061682 @default.
- W2024152120 cites W1509685428 @default.
- W2024152120 cites W1514430955 @default.
- W2024152120 cites W1535723299 @default.
- W2024152120 cites W1583700199 @default.
- W2024152120 cites W1584935767 @default.
- W2024152120 cites W1619226191 @default.
- W2024152120 cites W184664326 @default.
- W2024152120 cites W1849729440 @default.
- W2024152120 cites W1998560003 @default.
- W2024152120 cites W2014915963 @default.
- W2024152120 cites W204854932 @default.
- W2024152120 cites W2074584355 @default.
- W2024152120 cites W2097839764 @default.
- W2024152120 cites W2122379760 @default.
- W2024152120 cites W2125055259 @default.
- W2024152120 cites W2128420091 @default.
- W2024152120 cites W2133462743 @default.
- W2024152120 cites W2140190241 @default.
- W2024152120 cites W2148633389 @default.
- W2024152120 cites W2149706766 @default.
- W2024152120 cites W2154027576 @default.
- W2024152120 cites W2167442957 @default.
- W2024152120 cites W2547429051 @default.
- W2024152120 cites W3139831614 @default.
- W2024152120 cites W366697495 @default.
- W2024152120 cites W2185981305 @default.
- W2024152120 doi "https://doi.org/10.1109/acct.2013.14" @default.
- W2024152120 hasPublicationYear "2013" @default.
- W2024152120 type Work @default.
- W2024152120 sameAs 2024152120 @default.
- W2024152120 citedByCount "4" @default.
- W2024152120 countsByYear W20241521202015 @default.
- W2024152120 countsByYear W20241521202016 @default.
- W2024152120 countsByYear W20241521202020 @default.
- W2024152120 crossrefType "proceedings-article" @default.
- W2024152120 hasAuthorship W2024152120A5008219046 @default.
- W2024152120 hasAuthorship W2024152120A5069830695 @default.
- W2024152120 hasConcept C106131492 @default.
- W2024152120 hasConcept C111919701 @default.
- W2024152120 hasConcept C119857082 @default.
- W2024152120 hasConcept C12267149 @default.
- W2024152120 hasConcept C124101348 @default.
- W2024152120 hasConcept C138885662 @default.
- W2024152120 hasConcept C148483581 @default.
- W2024152120 hasConcept C154945302 @default.
- W2024152120 hasConcept C160735492 @default.
- W2024152120 hasConcept C162324750 @default.
- W2024152120 hasConcept C169258074 @default.
- W2024152120 hasConcept C177264268 @default.
- W2024152120 hasConcept C199360897 @default.
- W2024152120 hasConcept C202444582 @default.
- W2024152120 hasConcept C2776401178 @default.
- W2024152120 hasConcept C31972630 @default.
- W2024152120 hasConcept C33923547 @default.
- W2024152120 hasConcept C41008148 @default.
- W2024152120 hasConcept C41895202 @default.
- W2024152120 hasConcept C50522688 @default.
- W2024152120 hasConcept C52001869 @default.
- W2024152120 hasConcept C70518039 @default.
- W2024152120 hasConcept C84525736 @default.
- W2024152120 hasConcept C9652623 @default.
- W2024152120 hasConcept C98045186 @default.
- W2024152120 hasConceptScore W2024152120C106131492 @default.
- W2024152120 hasConceptScore W2024152120C111919701 @default.
- W2024152120 hasConceptScore W2024152120C119857082 @default.
- W2024152120 hasConceptScore W2024152120C12267149 @default.
- W2024152120 hasConceptScore W2024152120C124101348 @default.
- W2024152120 hasConceptScore W2024152120C138885662 @default.
- W2024152120 hasConceptScore W2024152120C148483581 @default.
- W2024152120 hasConceptScore W2024152120C154945302 @default.
- W2024152120 hasConceptScore W2024152120C160735492 @default.
- W2024152120 hasConceptScore W2024152120C162324750 @default.
- W2024152120 hasConceptScore W2024152120C169258074 @default.
- W2024152120 hasConceptScore W2024152120C177264268 @default.
- W2024152120 hasConceptScore W2024152120C199360897 @default.
- W2024152120 hasConceptScore W2024152120C202444582 @default.
- W2024152120 hasConceptScore W2024152120C2776401178 @default.
- W2024152120 hasConceptScore W2024152120C31972630 @default.
- W2024152120 hasConceptScore W2024152120C33923547 @default.
- W2024152120 hasConceptScore W2024152120C41008148 @default.
- W2024152120 hasConceptScore W2024152120C41895202 @default.
- W2024152120 hasConceptScore W2024152120C50522688 @default.
- W2024152120 hasConceptScore W2024152120C52001869 @default.
- W2024152120 hasConceptScore W2024152120C70518039 @default.
- W2024152120 hasConceptScore W2024152120C84525736 @default.
- W2024152120 hasConceptScore W2024152120C9652623 @default.
- W2024152120 hasConceptScore W2024152120C98045186 @default.
- W2024152120 hasLocation W20241521201 @default.
- W2024152120 hasOpenAccess W2024152120 @default.
- W2024152120 hasPrimaryLocation W20241521201 @default.