Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024152854> ?p ?o ?g. }
- W2024152854 endingPage "22424" @default.
- W2024152854 startingPage "22417" @default.
- W2024152854 abstract "Selenocysteine lyase (EC 4.4.1.16) exclusively decomposes selenocysteine to alanine and elemental selenium, whereas cysteine desulfurase (NIFS protein) of Azotobacter vinelandii acts indiscriminately on both cysteine and selenocysteine to produce elemental sulfur and selenium respectively, and alanine. These proteins exhibit some sequence homology. TheEscherichia coli genome contains three genes with sequence homology to nifS. We have cloned the gene mapped at 63.4 min in the chromosome and have expressed, purified to homogeneity, and characterized the gene product. The enzyme comprises two identical subunits with 401 amino acid residues (M r43,238) and contains pyridoxal 5′-phosphate as a coenzyme. The enzyme catalyzes the removal of elemental sulfur and selenium atoms froml-cysteine, l-cystine,l-selenocysteine, and l-selenocystine to produce l-alanine. Because l-cysteine sulfinic acid was desulfinated to form l-alanine as the preferred substrate, we have named this new enzyme cysteine sulfinate desulfinase. Mutant enzymes having alanine substituted for each of the four cysteinyl residues (Cys-100, Cys-176, Cys-323, and Cys-358) were all active. Cys-358 corresponds to Cys-325 of A. vinelandii NIFS, which is conserved among all NIFS-like proteins and catalytically essential (Zheng, L., White, R. H., Cash, V. L., and Dean, D. R. (1994) Biochemistry 33, 4714–4720), is not required for cysteine sulfinate desulfinase. Thus, the enzyme is distinct from A. vinelandii NIFS in this respect. Selenocysteine lyase (EC 4.4.1.16) exclusively decomposes selenocysteine to alanine and elemental selenium, whereas cysteine desulfurase (NIFS protein) of Azotobacter vinelandii acts indiscriminately on both cysteine and selenocysteine to produce elemental sulfur and selenium respectively, and alanine. These proteins exhibit some sequence homology. TheEscherichia coli genome contains three genes with sequence homology to nifS. We have cloned the gene mapped at 63.4 min in the chromosome and have expressed, purified to homogeneity, and characterized the gene product. The enzyme comprises two identical subunits with 401 amino acid residues (M r43,238) and contains pyridoxal 5′-phosphate as a coenzyme. The enzyme catalyzes the removal of elemental sulfur and selenium atoms froml-cysteine, l-cystine,l-selenocysteine, and l-selenocystine to produce l-alanine. Because l-cysteine sulfinic acid was desulfinated to form l-alanine as the preferred substrate, we have named this new enzyme cysteine sulfinate desulfinase. Mutant enzymes having alanine substituted for each of the four cysteinyl residues (Cys-100, Cys-176, Cys-323, and Cys-358) were all active. Cys-358 corresponds to Cys-325 of A. vinelandii NIFS, which is conserved among all NIFS-like proteins and catalytically essential (Zheng, L., White, R. H., Cash, V. L., and Dean, D. R. (1994) Biochemistry 33, 4714–4720), is not required for cysteine sulfinate desulfinase. Thus, the enzyme is distinct from A. vinelandii NIFS in this respect. Selenium, a homolog of sulfur, is an essential trace element for mammals and other organisms. It occurs in some selenoproteins as a selenocysteine residue (1Stadtman T.C. Annu. Rev. Biochem. 1990; 59: 111-127Crossref PubMed Scopus (353) Google Scholar, 2Esaki N. Soda K. Otsuka S. Yamanaka T. Metalloproteins. Elsevier Science, Amsterdam, The Netherlands1988: 429-439Google Scholar, 3Stadtman T.C. Annu. Rev. Biochem. 1996; 65: 83-100Crossref PubMed Scopus (808) Google Scholar), which is incorporated co-translationally into the proteins as directed by the unique codon, UGA (4Heider J. Böck A. Adv. Microb. Physiol. 1993; 35: 71-109Crossref PubMed Google Scholar, 5Böck A. Forchhammer K. Heider J. Leinfelder W. Sewers G. Veprek B. Zinoni F. Mol. Microbiol. 1991; 5: 515-520Crossref PubMed Scopus (548) Google Scholar). Other selenoproteins contain selenium in a dissociable form, coordinated with molybdenum (6Gladyshev V.N. Khangulov S.V. Stadtman T.C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 232-236Crossref PubMed Scopus (63) Google Scholar, 7Gladyshev V.N. Khangulov S.V. Axley M.J. Stadtman T.C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7708-7711Crossref PubMed Scopus (85) Google Scholar). Selenium is metabolized by enzymes including selenophosphate synthetase (8Veres Z. Kim I.Y. Scholz T.D. Stadtman T.C. J. Biol. Chem. 1994; 269: 10597-10603Abstract Full Text PDF PubMed Google Scholar), selenocysteine synthase (9Forchhammer K. Böck A. J. Biol. Chem. 1991; 266: 6324-6328Abstract Full Text PDF PubMed Google Scholar), selenocysteine lyase (10Esaki N. Nakamura T. Tanaka H. Soda K. J. Biol. Chem. 1982; 257: 4386-4391Abstract Full Text PDF PubMed Google Scholar, 11Chocat P. Esaki N. Tanizawa K. Nakamura K. Tanaka H. Soda K. J. Bacteriol. 1985; 163: 669-676Crossref PubMed Google Scholar), and selenocysteine methyltransferase (12Neuhierl B. Böck A. Eur. J. Biochem. 1996; 239: 235-238Crossref PubMed Scopus (147) Google Scholar). Some enzymes participating in sulfur metabolism also act on the selenium analogs of the substrates.We found selenocysteine lyase in mammals (10Esaki N. Nakamura T. Tanaka H. Soda K. J. Biol. Chem. 1982; 257: 4386-4391Abstract Full Text PDF PubMed Google Scholar) and bacteria (13Chocat P. Esaki N. Nakamura K. Tanaka H. Soda K. J. Bacteriol. 1983; 156: 455-457Crossref PubMed Google Scholar), and purified the enzyme from pig liver (10Esaki N. Nakamura T. Tanaka H. Soda K. J. Biol. Chem. 1982; 257: 4386-4391Abstract Full Text PDF PubMed Google Scholar) and Citrobacter freundii (11Chocat P. Esaki N. Tanizawa K. Nakamura K. Tanaka H. Soda K. J. Bacteriol. 1985; 163: 669-676Crossref PubMed Google Scholar). The enzyme specifically decomposesl-selenocysteine into l-alanine and elemental selenium; l-cysteine is inert as a substrate. Zhenget al. (14Zheng L. White R.H. Cash V.L. Dean D.R. Biochemistry. 1994; 33: 4714-4720Crossref PubMed Scopus (350) Google Scholar) recently demonstrated the function of NIFS protein, which is required for the efficient construction of the Fe-S clusters of nitrogenase in a diazotrophic bacterium Azotobacter vinelandii. NIFS catalyzes the same type of reaction as selenocysteine lyase, but acts on both l-cysteine andl-selenocysteine indiscriminately. The enzyme was named cysteine desulfurase, based on its inherent physiological role. Genes with a sequence similarity to that of nifS have been found not only in diazotrophs but also in non-diazotrophic microorganisms. It has been reported that the nifS-like genes of Bacillus subtilis and Saccharomyces cerevisiae are involved in NAD+ biosynthesis (15Sun D. Setlow P. J. Bacteriol. 1993; 175: 1423-1432Crossref PubMed Google Scholar) and tRNA processing (16Kolman C. Söll D. J. Bacteriol. 1993; 175: 1433-1442Crossref PubMed Google Scholar), respectively.The nucleotide sequence of the whole Escherichia coli genome has been determined (17O'Brien C. Nature. 1997; 385 (472): 472Crossref PubMed Scopus (13) Google Scholar), and the bacterium appears to contain threenifS-like genes (18Yamamoto Y. Aiba H. Baba T. Hayashi K. Inada T. Isono K. Itoh T. Kimura S. Kitagawa M. Makino K. Miki T. Mitsuhashi N. Mizobuchi K. Mori H. Nakade S. Nakamura Y. Nashimoto H. Oshima T. Oyama S. Saito N. Sampei G. Satoh Y. Sivasundaram S. Tagami H. Takahashi H. Takeda J. Takemoto K. Uehara K. Wada C. Yamagata S. Horiuchi T. DNA Res. 1977; 4: 91-113Crossref Scopus (39) Google Scholar, 19Aiba H. Baba T. Hayashi K. Inada T. Isono K., T., I. Kasai H. Kashimoto K. Kimura S. Kitakawa M. Kitagawa M. Makino K. Miki T. Mizobuchi K. Mori H. Mori T. Motomura K. Nakade S. Nakamura Y. Nashimoto H. Nishio Y. Oshima T. Saito N. Sampei G. Seki Y. Sivasundaram S. Tagami H. Takeda J. Takemoto K. Takeuchi Y. Wada C. Yamamoto Y. Horiuchi T. DNA Res. 1996; 3: 363-377Crossref PubMed Scopus (36) Google Scholar). One of the genes located at 57.3 min (18Yamamoto Y. Aiba H. Baba T. Hayashi K. Inada T. Isono K. Itoh T. Kimura S. Kitagawa M. Makino K. Miki T. Mitsuhashi N. Mizobuchi K. Mori H. Nakade S. Nakamura Y. Nashimoto H. Oshima T. Oyama S. Saito N. Sampei G. Satoh Y. Sivasundaram S. Tagami H. Takahashi H. Takeda J. Takemoto K. Uehara K. Wada C. Yamagata S. Horiuchi T. DNA Res. 1977; 4: 91-113Crossref Scopus (39) Google Scholar) in the chromosome presumably encodes the NIFS-like protein purified by Flint (20Flint D.H. J. Biol. Chem. 1996; 271: 16068-16074Abstract Full Text Full Text PDF PubMed Scopus (59) Google Scholar). Not only the amino acid sequence but also the catalytic properties of the enzyme resemble those of A. vinelandii NIFS. We have found that the N-terminal amino acid sequence of pig liver selenocysteine lyase is similar to that ofA. vinelandii NIFS (21Beynon J. Ally A. Cannon M. Cannon F. Jacobson M. Cash V. Dean D.R. J. Bacteriol. 1987; 169: 4024-4029Crossref PubMed Google Scholar). 1H. Mihara, T. Kurihara, T. Yoshimura, K. Soda, and N. Esaki, manuscript in preparation.1H. Mihara, T. Kurihara, T. Yoshimura, K. Soda, and N. Esaki, manuscript in preparation. If we assume thatE. coli contains selenocysteine lyase and that the enzyme resembles NIFS, one or both of the other two nifS-like genes may encode selenocysteine lyase(s). Alternatively, the genes may encode new enzymes participating in an unknown metabolism of sulfur or selenium amino acids. We have cloned the nifS-like gene mapped at 63.4 min (18Yamamoto Y. Aiba H. Baba T. Hayashi K. Inada T. Isono K. Itoh T. Kimura S. Kitagawa M. Makino K. Miki T. Mitsuhashi N. Mizobuchi K. Mori H. Nakade S. Nakamura Y. Nashimoto H. Oshima T. Oyama S. Saito N. Sampei G. Satoh Y. Sivasundaram S. Tagami H. Takahashi H. Takeda J. Takemoto K. Uehara K. Wada C. Yamagata S. Horiuchi T. DNA Res. 1977; 4: 91-113Crossref Scopus (39) Google Scholar), and found that the gene product is a novel PLP 2The abbreviations used are: PLP, pyridoxal 5′-phosphate; ORF, open reading frame; PAGE, polyacrylamide gel electrophoresis; Tricine,N-tris(hydroxymethyl)methylglycine.2The abbreviations used are: PLP, pyridoxal 5′-phosphate; ORF, open reading frame; PAGE, polyacrylamide gel electrophoresis; Tricine,N-tris(hydroxymethyl)methylglycine.-dependent enzyme decomposing l-selenocysteine,l-selenocystine, l-cysteine, andl-cystine. l-Cysteine sulfinic acid is also decomposed to l-alanine as the best substrate of the enzyme. We have tentatively named it cysteine sulfinate desulfinase. We describe here the characteristics of the enzyme and compare it with other related enzymes such as selenocysteine lyase and NIFS.DISCUSSIONNIFS of A. vinelandii participates in construction of the Fe-S clusters of not only nitrogenase (31Zheng L. Dean D.R. J. Biol. Chem. 1994; 269: 18723-18726Abstract Full Text PDF PubMed Google Scholar), but also other iron-sulfur proteins such as SoxR (32Hidalgo E. Demple B. J. Biol. Chem. 1996; 271: 7269-7272Abstract Full Text Full Text PDF PubMed Scopus (71) Google Scholar) and FNR (33Green J. Bennett B. Jordan P. Ralph E.T. Thomson A.J. Guest J.R. Biochem. J. 1996; 316: 887-892Crossref PubMed Scopus (157) Google Scholar). The NIFS-like enzyme of E. coli found by Flint (20Flint D.H. J. Biol. Chem. 1996; 271: 16068-16074Abstract Full Text Full Text PDF PubMed Scopus (59) Google Scholar) also provides apo-dihydroxy-acid dehydratase with a [4Fe-4S] cluster to reconstitute the enzyme in vitro. The N-terminal amino acid sequence of the enzyme was identical with that deduced from anothernifS-like gene of E. coli (Eco1 in TableIII). This gene, together with anifU-like gene, forms a unique gene cluster, which is similar to that found for nifS of Anabaena sp. (34Mulligan M.E. Haselkorn R. J. Biol. Chem. 1989; 264: 19200-19207Abstract Full Text PDF PubMed Google Scholar, 35Jackman D.M. Mulligan M.E. Microbiology. 1995; 141: 2235-2244Crossref PubMed Scopus (24) Google Scholar, 36Lyons E.M. Thiel T. J. Bacteriol. 1995; 177: 1570-1575Crossref PubMed Google Scholar). Three nifS-like genes have been demonstrated also in the genome of Haemophilus influenzae, and a similar gene cluster occurs around the Hin1 gene (Table III) of the genome. Therefore, Eco1 and Hin1 probably participate in construction of the Fe-S clusters of iron-sulfur proteins, in the same manner as NIFS ofA. vinelandii. Synechocystis sp. PCC6803 also contains three nifS-like genes. However, we found no such gene organization around it. Similarly, none of the cysteine sulfinate desulfinase genes and the third nifS-like gene (Eco2 in Table III) of E. coli form such gene clusters. The same is true for the other nifS-like genes of H. influenzae (Hin2 and Hin3). Therefore, these NIFS-like proteins probably have biochemical functions different from those of Eco1, Hin1, and A. vinelandii NIFS.Table IIINIFSs and NIFS-like proteinsSourceAbbreviationAccessionLengthRef.A. vinelandiiAviP053413-aSWISS-PROT.402(21Beynon J. Ally A. Cannon M. Cannon F. Jacobson M. Cash V. Dean D.R. J. Bacteriol. 1987; 169: 4024-4029Crossref PubMed Google Scholar)Azotobacter chroococcumAchP231203-aSWISS-PROT.396(48Evans D.J. Jones R. Woodley P.R. Wilborn J.R. Robson R. J. Bacteriol. 1991; 173: 5457-5469Crossref PubMed Google Scholar)Azospirillum brasilenseAbrU264273-bGenBank™/EMBL.398(49Singh M. Tripathi A.K. Klingmuller W. Mol. Gen. Genet. 1989; 219: 235-240Crossref PubMed Scopus (17) Google Scholar)Enterobacter agglomeransEagX996943-bGenBank™/EMBL.401Klebsiella pneumoniaeKpnP0533443-aSWISS-PROT.397(21Beynon J. Ally A. Cannon M. Cannon F. Jacobson M. Cash V. Dean D.R. J. Bacteriol. 1987; 169: 4024-4029Crossref PubMed Google Scholar)Rhodobacter sphaeroidesRshQ011793-aSWISS-PROT.387(50Meijer W.G. Tabita F.R. J. Bacteriol. 1992; 174: 3855-3866Crossref PubMed Google Scholar)Rhodobacter capsulatusRcaQ071773-aSWISS-PROT.384(51Masepohl B. Angermuller S. Hennecke S. Hubner P. Moreno-Vivian C. Klipp W. Mol. Gen. Genet. 1993; 238: 369-382Crossref PubMed Scopus (37) Google Scholar)Anabaena sp. PCC7120AspP126233-aSWISS-PROT.400(35Jackman D.M. Mulligan M.E. Microbiology. 1995; 141: 2235-2244Crossref PubMed Scopus (24) Google Scholar)Anabaena variabilisAva2U498593-bGenBank™/EMBL.398(52Thiel T. Lyons E.M. Erker J.C. Ernst A. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 9358-9362Crossref PubMed Scopus (108) Google Scholar)Anabaena azollaeAazL348793-bGenBank™/EMBL.400(36Lyons E.M. Thiel T. J. Bacteriol. 1995; 177: 1570-1575Crossref PubMed Google Scholar)Synechocystis sp. PCC6803Ssp1D640043-bGenBank™/EMBL.,3-dslr0077.420(53Kaneko T. Tanaka A. Sato S. Kotani H. Sazuka T. Miyajima N. Sugiura M. Tabata S. DNA Res. 1995; 2: 153-166Crossref PubMed Scopus (262) Google Scholar)Synechocystis sp. PCC6803Ssp2D639993-bGenBank™/EMBL.,3-eslr0387.386(53Kaneko T. Tanaka A. Sato S. Kotani H. Sazuka T. Miyajima N. Sugiura M. Tabata S. DNA Res. 1995; 2: 153-166Crossref PubMed Scopus (262) Google Scholar)Synechocystis sp. PCC6803Ssp3D908993-bGenBank™/EMBL.,3-fsll0704.391(54Kaneko T. Sato S. Kotani H. Tanaka A. Asamizu E. Nakamura Y. Miyajima N. Hirosawa M. Sugiura M. Sasamoto S. Kimura T. Hosouchi T. Matsuno A. Muraki A. Nakazaki N. Naruo K. Okumura S. Shimpo S. Takeuchi C. Wada T. Watanabe A. Yamada M. Yasuda M. Tabata S. DNA Res. 1996; 3: 109-136Crossref PubMed Scopus (2108) Google Scholar)H. influenzae RdHin1HI03783-cTIGR microbial data base.406(55Fleischmann R.D. Adams M.D. White O. Clayton R.A. Kirkness E.F. Kerlavage A.R. Bult C.J. Tomb J.F. Dougherty B.A. Merrick J.M. McKenney K. Sutton G. FitzHugh W. Fields C. Gocayne J.D. Scott J. Shirley R. Liu L.I. Glodek A. Kelley J.M. Weidman J.F. Phillips C.A. Spriggs T. Hedblom E. Cotton M.D. Utterback T.R. Hanna M.C. Nguyen D.T. Saudek D.M. Brandon R.C. Fine L.D. Fritchman J.L. Fuhrmann J.L. Geoghagen N.S.M. Gnehm C.L. McDonald L.A. Small K.V. Fraser C.M. Smith H.O. Venter J.C. Science. 1995; 269: 496-512Crossref PubMed Scopus (4642) Google Scholar)H. influenzaeRdHin2HI12953-cTIGR microbial data base.437(55Fleischmann R.D. Adams M.D. White O. Clayton R.A. Kirkness E.F. Kerlavage A.R. Bult C.J. Tomb J.F. Dougherty B.A. Merrick J.M. McKenney K. Sutton G. FitzHugh W. Fields C. Gocayne J.D. Scott J. Shirley R. Liu L.I. Glodek A. Kelley J.M. Weidman J.F. Phillips C.A. Spriggs T. Hedblom E. Cotton M.D. Utterback T.R. Hanna M.C. Nguyen D.T. Saudek D.M. Brandon R.C. Fine L.D. Fritchman J.L. Fuhrmann J.L. Geoghagen N.S.M. Gnehm C.L. McDonald L.A. Small K.V. Fraser C.M. Smith H.O. Venter J.C. Science. 1995; 269: 496-512Crossref PubMed Scopus (4642) Google Scholar)H. influenzae RdHin3HI13433-cTIGR microbial data base.238(55Fleischmann R.D. Adams M.D. White O. Clayton R.A. Kirkness E.F. Kerlavage A.R. Bult C.J. Tomb J.F. Dougherty B.A. Merrick J.M. McKenney K. Sutton G. FitzHugh W. Fields C. Gocayne J.D. Scott J. Shirley R. Liu L.I. Glodek A. Kelley J.M. Weidman J.F. Phillips C.A. Spriggs T. Hedblom E. Cotton M.D. Utterback T.R. Hanna M.C. Nguyen D.T. Saudek D.M. Brandon R.C. Fine L.D. Fritchman J.L. Fuhrmann J.L. Geoghagen N.S.M. Gnehm C.L. McDonald L.A. Small K.V. Fraser C.M. Smith H.O. Venter J.C. Science. 1995; 269: 496-512Crossref PubMed Scopus (4642) Google Scholar)E. coli K-12Eco1D908833-bGenBank™/EMBL.,3-gyzz0.404(18Yamamoto Y. Aiba H. Baba T. Hayashi K. Inada T. Isono K. Itoh T. Kimura S. Kitagawa M. Makino K. Miki T. Mitsuhashi N. Mizobuchi K. Mori H. Nakade S. Nakamura Y. Nashimoto H. Oshima T. Oyama S. Saito N. Sampei G. Satoh Y. Sivasundaram S. Tagami H. Takahashi H. Takeda J. Takemoto K. Uehara K. Wada C. Yamagata S. Horiuchi T. DNA Res. 1977; 4: 91-113Crossref Scopus (39) Google Scholar)E. coli K-12Eco2D908113-bGenBank™/EMBL.,3-ho320#17.406(19Aiba H. Baba T. Hayashi K. Inada T. Isono K., T., I. Kasai H. Kashimoto K. Kimura S. Kitakawa M. Kitagawa M. Makino K. Miki T. Mizobuchi K. Mori H. Mori T. Motomura K. Nakade S. Nakamura Y. Nashimoto H. Nishio Y. Oshima T. Saito N. Sampei G. Seki Y. Sivasundaram S. Tagami H. Takeda J. Takemoto K. Takeuchi Y. Wada C. Yamamoto Y. Horiuchi T. DNA Res. 1996; 3: 363-377Crossref PubMed Scopus (36) Google Scholar)E. coli K-12CSDU2958103-bGenBank™/EMBL.,3-io401.401(18Yamamoto Y. Aiba H. Baba T. Hayashi K. Inada T. Isono K. Itoh T. Kimura S. Kitagawa M. Makino K. Miki T. Mitsuhashi N. Mizobuchi K. Mori H. Nakade S. Nakamura Y. Nashimoto H. Oshima T. Oyama S. Saito N. Sampei G. Satoh Y. Sivasundaram S. Tagami H. Takahashi H. Takeda J. Takemoto K. Uehara K. Wada C. Yamagata S. Horiuchi T. DNA Res. 1977; 4: 91-113Crossref Scopus (39) Google Scholar)S. cerevisiaeSceP253743-aSWISS-PROT.497(15Sun D. Setlow P. J. Bacteriol. 1993; 175: 1423-1432Crossref PubMed Google Scholar)Lactobacillus delbrueckiiLdeP316723-aSWISS-PROT.355(56Leong-Morgenthaler P. Oliver S.G. Hottinger H. Söll D. Biochimie. 1994; 76: 45-49Crossref PubMed Scopus (13) Google Scholar)B. subtilisBsuP380333-aSWISS-PROT.395(14Zheng L. White R.H. Cash V.L. Dean D.R. Biochemistry. 1994; 33: 4714-4720Crossref PubMed Scopus (350) Google Scholar)Caenorhabditis elegansCelU231393-bGenBank™/EMBL.,3-jF13H8.9.328(57Wilson R. Ainscough R. Anderson K. Baynes C. Berks M. Bonfield J. Burton J. Connell M. Copsey T. Cooper J. Coulson A. Craxton M. Dear S. Du Z. Durbin R. Favello A. Fulton L. Gardner A. Green P. Hawkins T. Hillier L. Jier M. Johnston L. Jones M. Kershaw J. Kirsten J. Laister N. Latreille P. Lightning J. Lloyd C. McMurray A. Mortimore B. O'Callaghan M. Parsons J. Percy C. Rifken L. Roopra A. Saunders D. Shownkeen R. Smaldon N. Smith A. Sonnhammer E. Staden R. Sulston J. Thierry-Mieg J. Thomas K. Vaudin M. Vaughan K. Waterston R. Watson A. Weinstock L. Wilkinson-Sproat J. Wohldman P. Nature. 1994; 368: 32-38Crossref PubMed Scopus (1439) Google Scholar)Mycobacterium lepraeMleU000133-bGenBank™/EMBL.418Mycoplasma pneumoniaeMpnAE0000343-bGenBank™/EMBL.408(58Himmelreich R. Hilbert H. Plagens H. Pirkl E. Li B.-C. Herrmann R. Nucleic Acids Res. 1996; 24: 4420-4449Crossref PubMed Scopus (950) Google Scholar)Mycoplasma genitaliumMgeU397163-bGenBank™/EMBL.408(59Fraser C.M. Gocayne J.D. White O. Adams M.D. Clayton R.A. Fleischmann R.D. Bult C.J. Kerlavage A.R. Sutton G. Kelley J.M. Fritchman J.L. Weidman J.F. Small K.V. Sandusky M. Fuhrmann J. Nguyen D. Utterback T.R. Saudek D.M. Phillips C.A. Merrick J.M. Tomb J.F. Dougherty B.A. Bott K.F. Hu P.C. Lucier T.S. Peterson S.N. Smith H.O. Hutchison III, C.A. Venter J.C. Science. 1995; 270: 397-403Crossref PubMed Scopus (2105) Google Scholar)Accession indicates the accession numbers. Length is the length of the protein. The corresponding sequence data are indicated in Footnotesd–j.3-a SWISS-PROT.3-b GenBank™/EMBL.3-c TIGR microbial data base.3-d slr0077.3-e slr0387.3-f sll0704.3-g yzz0.3-h o320#17.3-i o401.3-j F13H8.9. Open table in a new tab NIFS has been classified into the same group as aminotransferases of class V (37Grishin N.V. Phillips M.A. Goldsmith E.J. Protein Sci. 1995; 4: 1291-1304Crossref PubMed Scopus (339) Google Scholar) and subgroup IV (38Mehta P.K. Christen P. Eur. J. Biochem. 1993; 211: 373-376Crossref PubMed Scopus (47) Google Scholar), which include serine-pyruvate aminotransferase (EC 2.6.1.51) and phosphoserine aminotransferase (EC2.6.1.52), on the basis of sequence homology analysis. Isopenicillin-N-epimerase belongs to the same group as various PLP-dependent enzymes, other than aminotransferases (37Grishin N.V. Phillips M.A. Goldsmith E.J. Protein Sci. 1995; 4: 1291-1304Crossref PubMed Scopus (339) Google Scholar, 38Mehta P.K. Christen P. Eur. J. Biochem. 1993; 211: 373-376Crossref PubMed Scopus (47) Google Scholar). It has therefore been suggested that NIFS and isopenicillin-N-epimerase evolved from the common ancestral protein for the aminotransferases of these classes (37Grishin N.V. Phillips M.A. Goldsmith E.J. Protein Sci. 1995; 4: 1291-1304Crossref PubMed Scopus (339) Google Scholar, 38Mehta P.K. Christen P. Eur. J. Biochem. 1993; 211: 373-376Crossref PubMed Scopus (47) Google Scholar).We have found that NIFS family proteins are classified into two groups, I and II, according to their sequence similarities. The two groups are clearly distinct from each other in the regions named a,b, c, and d (Fig.3). Average sequence similarities of cysteine sulfinate desulfinase to Group I and II members were 23 and 37%, respectively. The similarity relationship among NIFS family proteins is shown in a phylogenetic tree (Fig.4), which also indicates that the proteins are classified into two major groups. The proteins Cel, Lde, Bsu, and Ssp3 are far from the others, but are close to the members of Group I than to the Group II proteins.We have shown that selenocysteine lyase from C. freundii is quite different from the pig liver enzyme in various physicochemical properties (11Chocat P. Esaki N. Tanizawa K. Nakamura K. Tanaka H. Soda K. J. Bacteriol. 1985; 163: 669-676Crossref PubMed Google Scholar). The amino acid compositions of pig liver selenocysteine lyase (PIG), cysteine sulfinate desulfinase (CSD), A. vinelandii NIFS (Avi), andE. coli NIFS-like protein (Eco1) resemble each other, but are distinct from that of selenocysteine lyase from C. freundii (CFR) (Fig. 5). Therefore, the latter enzyme probably belongs to a different family of proteins.Figure 5Comparison of the amino acid compositions of selenocysteine lyase and NIFS family proteins. The amino acid compositions of selenocysteine lyases were obtained from the previous report (11Chocat P. Esaki N. Tanizawa K. Nakamura K. Tanaka H. Soda K. J. Bacteriol. 1985; 163: 669-676Crossref PubMed Google Scholar). Those of NIFS family proteins were calculated from the amino acid sequences deduced from the nucleotide sequences of the genes. Histograms show the amino acid compositions: Avi,A. vinelandii NIFS; Eco1, E. coliNIFS-like protein; CSD, cysteine sulfinate desulfinase;PIG, pig liver selenocysteine lyase; CFR,C. freundii selenocysteine lyase.View Large Image Figure ViewerDownload Hi-res image Download (PPT)The NIFS-like protein from E. coli and NIFS from A. vinelandii have common characteristics; both contain essential cysteinyl residues at the active sites. The thiol group presumably attacks as a nucleophile the sulfur atom of the substrate, cysteine, to form the intermediate, enzyme-bound cysteinyl persulfide (14Zheng L. White R.H. Cash V.L. Dean D.R. Biochemistry. 1994; 33: 4714-4720Crossref PubMed Scopus (350) Google Scholar, 20Flint D.H. J. Biol. Chem. 1996; 271: 16068-16074Abstract Full Text Full Text PDF PubMed Scopus (59) Google Scholar). By contrast, no cysteinyl residue of cysteine sulfinate desulfinase is essential for catalysis. The cysteine sulfinate desulfinase reaction is assumed to proceed through direct release of elemental selenium or sulfur atom from the substrate, selenocysteine or cysteine. It has been assumed that formation of the enzyme-bound cysteinyl persulfide is crucial to deliver sulfur atoms efficiently to iron-sulfur proteins. If this is the case, cysteine sulfinate desulfinase will not be related metabolically to the formation of Fe-S clusters, although sulfur atoms produced from cysteine by the enzyme are probably incorporated into iron-sulfur proteins with low efficiency in the same manner as observed for O-acetylserine sulfhydrylase A (EC 4.2.99.8),O-acetylserine sulfhydrylase B (EC 4.2.99.8), and β-cystathionase (EC 4.4.1.8) (39Flint D.H. Tuminello J.F. Miller T.J. J. Biol. Chem. 1996; 271: 16053-16067Abstract Full Text Full Text PDF PubMed Scopus (71) Google Scholar). The fact that theK m value of cysteine sulfinate desulfinase for cysteine is high also suggests that cysteine is not the physiological substrate of the enzyme.The irreversible inactivation of PLP enzymes by β-chloroalanine has been shown to proceed through modification of the enzyme-bound PLP with nascent α-aminoacrylate formed from β-chloroalanine (40Badet B. Roise D. Walsh C.T. Biochemistry. 1984; 23: 5188-5194Crossref PubMed Scopus (93) Google Scholar, 41Roise D. Soda K. Yagi T. Walsh C.T. Biochemistry. 1984; 23: 5195-5201Crossref PubMed Scopus (66) Google Scholar, 42Ueno H. Likos J. Metzler D.E. Biochemistry. 1982; 21: 4387-4393Crossref PubMed Scopus (107) Google Scholar). Cysteine sulfinate desulfinase catalyzes the same type of reaction as do selenocysteine lyase, aspartate β-decarboxylase, and kynureninase. All these enzymes except cysteine sulfinate desulfinase are inactivated by β-chloroalanine (10Esaki N. Nakamura T. Tanaka H. Soda K. J. Biol. Chem. 1982; 257: 4386-4391Abstract Full Text PDF PubMed Google Scholar, 43Tate S.S. Relyea N.M. Meister A. Biochemistry. 1969; 8: 5016-5021Crossref PubMed Scopus (31) Google Scholar, 44Kishore G.M. J. Biol. Chem. 1984; 259: 10669-10674Abstract Full Text PDF PubMed Google Scholar). Nascent α-aminoacrylate is probably released from the active site of cysteine sulfinate desulfinase much more quickly than from those of the other enzymes. Alternatively, α-aminoacrylate may be hydrolyzed quickly to pyruvate and ammonia, and so the enzyme can escape from modification with α-aminoacrylate.In mammals, cysteine is oxidized by cysteine dioxygenase (EC1.13.11.20) to form cysteine sulfinic acid, which is decarboxylated to form hypotaurine by cysteine sulfinate decarboxylase (EC 4.1.1.29). cDNAs for cysteine dioxygenase (45Hosokawa Y. Matsumoto A. Oka J. Itakura H. Yamaguchi K. Biochem. Biophys. Res. Commun. 1990; 168: 473-478Crossref PubMed Scopus (44) Google Scholar) and cysteine sulfinate decarboxylase (46Reymond I. Sergeant A. Tappaz M. Biochim. Biophys. Acta. 1996; 1307: 152-156Crossref PubMed Scopus (26) Google Scholar) were cloned and sequenced. We found no sequences similar to those of the cDNAs in the whole genomic sequence ofE. coli K-12. If E. coli has a cysteine dioxygenase, it will have little sequence similarity to the mammalian enzyme. Alternatively, if no cysteine dioxygenase occurs in E. coli, the cysteine desulfination may be a side function of the enzyme with no metabolic relevance. Aspartate β-decarboxylase and aspartate aminotransferase also use cysteine sulfinate as a good substrate and desulfinate it (29Soda K. Novogrodsky A. Meister A. Biochemistry. 1964; 3: 1450-1453Crossref PubMed Scopus (25) Google Scholar, 43Tate S.S. Relyea N.M. Meister A. Biochemistry. 1969; 8: 5016-5021Crossref PubMed Scopus (31) Google Scholar, 47Recasens M. Benezra R. Basset P. Mandel P. Biochemistry. 1980; 19: 4583-4589Crossref PubMed Scopus (36) Google Scholar). Whatever the physiological function of cysteine sulfinate desulfinase is, this is the first enzyme in Group II whose catalytic function has been clarified (Fig. 4). Other proteins of this group probably have a similar catalytic function to cysteine sulfinate desulfinase. Cloning and expression of the Eco2 gene, the last nifS-like gene of E. coli mapped at 38.3 min (19Aiba H. Baba T. Hayashi K. Inada T. Isono K., T., I. Kasai H. Kashimoto K. Kimura S. Kitakawa M. Kitagawa M. Makino K. Miki T. Mizobuchi K. Mori H. Mori T. Motomura K. Nakade S. Nakamura Y. Nashimoto H. Nishio Y. Oshima T. Saito N. Sampei G. Seki Y. Sivasundaram S. Tagami H. Takeda J. Takemoto K. Takeuchi Y. Wada C. Yamamoto Y. Horiuchi T. DNA Res. 1996; 3: 363-377Crossref PubMed Scopus (36) Google Scholar) in the chromosome, and characterization of the gene product, are now being studied. Selenium, a homolog of sulfur, is an essential trace element for mammals and other organisms. It occurs in some selenoproteins as a selenocysteine residue (1Stadtman T.C. Annu. Rev. Biochem. 1990; 59: 111-127Crossref PubMed Scopus (353) Google Scholar, 2Esaki N. Soda K. Otsuka S. Yamanaka T. Metalloproteins. Elsevier Science, Amsterdam, The Netherlands1988: 429-439Google Scholar, 3Stadtman T.C. Annu. Rev. Biochem. 1996; 65: 83-100Crossref PubMed Scopus (808) Google Scholar), which is incorporated co-translationally into the proteins as directed by the unique codon, UGA (4Heider J. Böck A. Adv. Mic" @default.
- W2024152854 created "2016-06-24" @default.
- W2024152854 creator A5001328270 @default.
- W2024152854 creator A5034996400 @default.
- W2024152854 creator A5035751988 @default.
- W2024152854 creator A5038857193 @default.
- W2024152854 creator A5080295889 @default.
- W2024152854 date "1997-09-01" @default.
- W2024152854 modified "2023-10-02" @default.
- W2024152854 title "Cysteine Sulfinate Desulfinase, a NIFS-like Protein ofEscherichia coli with Selenocysteine Lyase and Cysteine Desulfurase Activities" @default.
- W2024152854 cites W1513577066 @default.
- W2024152854 cites W1521493935 @default.
- W2024152854 cites W1521649230 @default.
- W2024152854 cites W1532421291 @default.
- W2024152854 cites W1538375669 @default.
- W2024152854 cites W1547413582 @default.
- W2024152854 cites W1550873995 @default.
- W2024152854 cites W1551076656 @default.
- W2024152854 cites W1568037618 @default.
- W2024152854 cites W1576853862 @default.
- W2024152854 cites W1580408986 @default.
- W2024152854 cites W1583466237 @default.
- W2024152854 cites W1593475919 @default.
- W2024152854 cites W1610318839 @default.
- W2024152854 cites W1631232816 @default.
- W2024152854 cites W1647577587 @default.
- W2024152854 cites W167646799 @default.
- W2024152854 cites W1733622094 @default.
- W2024152854 cites W1965237457 @default.
- W2024152854 cites W1970061723 @default.
- W2024152854 cites W1971403296 @default.
- W2024152854 cites W1973706463 @default.
- W2024152854 cites W1977857718 @default.
- W2024152854 cites W1981556593 @default.
- W2024152854 cites W1985844569 @default.
- W2024152854 cites W2004357982 @default.
- W2024152854 cites W2010947990 @default.
- W2024152854 cites W2011956538 @default.
- W2024152854 cites W2015292449 @default.
- W2024152854 cites W2026032707 @default.
- W2024152854 cites W2036931150 @default.
- W2024152854 cites W2041652393 @default.
- W2024152854 cites W2050281854 @default.
- W2024152854 cites W2052616068 @default.
- W2024152854 cites W2055043387 @default.
- W2024152854 cites W2056594631 @default.
- W2024152854 cites W2058573373 @default.
- W2024152854 cites W2067486816 @default.
- W2024152854 cites W2069593232 @default.
- W2024152854 cites W2072799326 @default.
- W2024152854 cites W2074321943 @default.
- W2024152854 cites W2078302145 @default.
- W2024152854 cites W2087921651 @default.
- W2024152854 cites W2091621771 @default.
- W2024152854 cites W2100837269 @default.
- W2024152854 cites W2111302721 @default.
- W2024152854 cites W2119465691 @default.
- W2024152854 cites W2138602726 @default.
- W2024152854 cites W2147694156 @default.
- W2024152854 cites W2152946550 @default.
- W2024152854 cites W2168912171 @default.
- W2024152854 cites W217428907 @default.
- W2024152854 cites W254586872 @default.
- W2024152854 cites W4210886010 @default.
- W2024152854 cites W4241213872 @default.
- W2024152854 cites W4249652172 @default.
- W2024152854 cites W4251440173 @default.
- W2024152854 cites W4295127969 @default.
- W2024152854 doi "https://doi.org/10.1074/jbc.272.36.22417" @default.
- W2024152854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9278392" @default.
- W2024152854 hasPublicationYear "1997" @default.
- W2024152854 type Work @default.
- W2024152854 sameAs 2024152854 @default.
- W2024152854 citedByCount "151" @default.
- W2024152854 countsByYear W20241528542012 @default.
- W2024152854 countsByYear W20241528542013 @default.
- W2024152854 countsByYear W20241528542014 @default.
- W2024152854 countsByYear W20241528542015 @default.
- W2024152854 countsByYear W20241528542016 @default.
- W2024152854 countsByYear W20241528542017 @default.
- W2024152854 countsByYear W20241528542018 @default.
- W2024152854 countsByYear W20241528542019 @default.
- W2024152854 countsByYear W20241528542020 @default.
- W2024152854 countsByYear W20241528542021 @default.
- W2024152854 countsByYear W20241528542022 @default.
- W2024152854 crossrefType "journal-article" @default.
- W2024152854 hasAuthorship W2024152854A5001328270 @default.
- W2024152854 hasAuthorship W2024152854A5034996400 @default.
- W2024152854 hasAuthorship W2024152854A5035751988 @default.
- W2024152854 hasAuthorship W2024152854A5038857193 @default.
- W2024152854 hasAuthorship W2024152854A5080295889 @default.
- W2024152854 hasBestOaLocation W20241528541 @default.
- W2024152854 hasConcept C181199279 @default.
- W2024152854 hasConcept C185592680 @default.
- W2024152854 hasConcept C2776087148 @default.
- W2024152854 hasConcept C2779201268 @default.
- W2024152854 hasConcept C55493867 @default.
- W2024152854 hasConcept C86803240 @default.