Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024163755> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2024163755 abstract "Atmospheric InfraRed Sounder (AIRS) is a hyper-spectral infrared instrument on the EOS-Aqua satellite. Principal Component Analysis (PCA) of realistic simulations of AIRS radiances, which includes the effects of variable clouds and surface parameters, can be used to estimate and filter AIRS instrumental noise. The PCA uses noise scaled radiance, i.e. radiance divided by noise (R/N). Since the square root of the eigenvalues is equivalent to the standard deviation of the principal component score of the dependent ensemble, the square root of the eigenvalues in the R/N domain can be interpreted as a signal to the noise ratio for the new principal components (PC) or say abstract channels. New PCs are arranged from the largest to the smallest eigenvalues. Once the R/N ratio is below unity, the signal has less contribution than noise for that PC and all the remaining PCs. This physical meaningful fact can be a criterion for radiance noise filtering. Using the linearity of PCA to the pure signal S plus ideal noise N in the R/N domain, PCA(N/N) becomes PCA(I). I is the identity matrix and hence eigenvalues of I are all equal. If reconstructing I, only k/m information can be recovered by k eigenvectors, where k = 1 .... m eigenvectors. Thus, it is easy to know how much noise merged into the reconstructed radiance and how many eigenvectors are needed for filtering noise when performing PCA in R/N domain. The number of eigenvectors to be used for noise estimating is around 60 in all sky conditions. 60 eigenvectors can filter over 97% of noise. Only 3% noise remains in the reconstructed data. Signal information can be recovered with accuracy in noise level. In addition, there is less than 5% error using PCA to estimate noise. Preliminary results from the real AIRS observation are discussed briefly." @default.
- W2024163755 created "2016-06-24" @default.
- W2024163755 creator A5019714537 @default.
- W2024163755 creator A5040166384 @default.
- W2024163755 date "2003-06-10" @default.
- W2024163755 modified "2023-10-18" @default.
- W2024163755 title "Noise estimating and filtering of hyperspectral infrared radiance" @default.
- W2024163755 doi "https://doi.org/10.1117/12.467645" @default.
- W2024163755 hasPublicationYear "2003" @default.
- W2024163755 type Work @default.
- W2024163755 sameAs 2024163755 @default.
- W2024163755 citedByCount "0" @default.
- W2024163755 crossrefType "proceedings-article" @default.
- W2024163755 hasAuthorship W2024163755A5019714537 @default.
- W2024163755 hasAuthorship W2024163755A5040166384 @default.
- W2024163755 hasConcept C105795698 @default.
- W2024163755 hasConcept C115961682 @default.
- W2024163755 hasConcept C121332964 @default.
- W2024163755 hasConcept C127313418 @default.
- W2024163755 hasConcept C154945302 @default.
- W2024163755 hasConcept C158693339 @default.
- W2024163755 hasConcept C159078339 @default.
- W2024163755 hasConcept C23690007 @default.
- W2024163755 hasConcept C27438332 @default.
- W2024163755 hasConcept C33923547 @default.
- W2024163755 hasConcept C41008148 @default.
- W2024163755 hasConcept C62520636 @default.
- W2024163755 hasConcept C62649853 @default.
- W2024163755 hasConcept C99498987 @default.
- W2024163755 hasConceptScore W2024163755C105795698 @default.
- W2024163755 hasConceptScore W2024163755C115961682 @default.
- W2024163755 hasConceptScore W2024163755C121332964 @default.
- W2024163755 hasConceptScore W2024163755C127313418 @default.
- W2024163755 hasConceptScore W2024163755C154945302 @default.
- W2024163755 hasConceptScore W2024163755C158693339 @default.
- W2024163755 hasConceptScore W2024163755C159078339 @default.
- W2024163755 hasConceptScore W2024163755C23690007 @default.
- W2024163755 hasConceptScore W2024163755C27438332 @default.
- W2024163755 hasConceptScore W2024163755C33923547 @default.
- W2024163755 hasConceptScore W2024163755C41008148 @default.
- W2024163755 hasConceptScore W2024163755C62520636 @default.
- W2024163755 hasConceptScore W2024163755C62649853 @default.
- W2024163755 hasConceptScore W2024163755C99498987 @default.
- W2024163755 hasLocation W20241637551 @default.
- W2024163755 hasOpenAccess W2024163755 @default.
- W2024163755 hasPrimaryLocation W20241637551 @default.
- W2024163755 hasRelatedWork W1972676964 @default.
- W2024163755 hasRelatedWork W2057800360 @default.
- W2024163755 hasRelatedWork W2066862610 @default.
- W2024163755 hasRelatedWork W2412485884 @default.
- W2024163755 hasRelatedWork W2767195302 @default.
- W2024163755 hasRelatedWork W3014714106 @default.
- W2024163755 hasRelatedWork W3176195225 @default.
- W2024163755 hasRelatedWork W3214468933 @default.
- W2024163755 hasRelatedWork W2092590826 @default.
- W2024163755 hasRelatedWork W2551134208 @default.
- W2024163755 isParatext "false" @default.
- W2024163755 isRetracted "false" @default.
- W2024163755 magId "2024163755" @default.
- W2024163755 workType "article" @default.