Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024184462> ?p ?o ?g. }
- W2024184462 endingPage "5508" @default.
- W2024184462 startingPage "5472" @default.
- W2024184462 abstract "Computer simulations of metal forming processes using the finite element method (FEM) are, today, well established. This form of simulation uses an increasing number of sophisticated geometrical and material models, relying on a certain number of input data, which are not always readily available. The aim of inverse problems, which will be considered here, is to determine one or more of the input data relating to these forming process simulations, thereby leading to a desired result. In this paper, we will focus on two categories of such inverse problems. The first category consists of parameter identification inverse problems. These involve evaluating the material parameters for material constitutive models that would lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental results and FEM simulations. The second category consists of shape/process optimization inverse problems. These involve determining the initial geometry of the specimen and/or the shape of the forming tools, as well as some parameters of the process itself, in order to provide the desired final geometry after the forming process. These two categories of inverse problems can be formulated as optimization problems in a similar way, i.e. by using identical optimization algorithms. In this paper, we intend firstly to solve these two types of optimization problems by using different non-linear gradient based optimization methods and secondly to compare their efficiency and robustness in a variety of numerical applications." @default.
- W2024184462 created "2016-06-24" @default.
- W2024184462 creator A5019062248 @default.
- W2024184462 creator A5082452948 @default.
- W2024184462 date "2006-08-01" @default.
- W2024184462 modified "2023-09-27" @default.
- W2024184462 title "A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation" @default.
- W2024184462 cites W1964184444 @default.
- W2024184462 cites W1964630469 @default.
- W2024184462 cites W1964858137 @default.
- W2024184462 cites W1965680085 @default.
- W2024184462 cites W1966253115 @default.
- W2024184462 cites W1967657972 @default.
- W2024184462 cites W1971408312 @default.
- W2024184462 cites W1971930229 @default.
- W2024184462 cites W1972336130 @default.
- W2024184462 cites W1978642634 @default.
- W2024184462 cites W1980072408 @default.
- W2024184462 cites W1980499438 @default.
- W2024184462 cites W1980626951 @default.
- W2024184462 cites W1980882580 @default.
- W2024184462 cites W1983416075 @default.
- W2024184462 cites W1983995791 @default.
- W2024184462 cites W1984752742 @default.
- W2024184462 cites W1989023567 @default.
- W2024184462 cites W1993725358 @default.
- W2024184462 cites W1994696923 @default.
- W2024184462 cites W1999480622 @default.
- W2024184462 cites W2001100124 @default.
- W2024184462 cites W2001259242 @default.
- W2024184462 cites W2003727417 @default.
- W2024184462 cites W2004352737 @default.
- W2024184462 cites W2008490330 @default.
- W2024184462 cites W2008575846 @default.
- W2024184462 cites W2009285368 @default.
- W2024184462 cites W2013118988 @default.
- W2024184462 cites W2014364976 @default.
- W2024184462 cites W2015072790 @default.
- W2024184462 cites W2016062971 @default.
- W2024184462 cites W2017177200 @default.
- W2024184462 cites W2020034366 @default.
- W2024184462 cites W2021958191 @default.
- W2024184462 cites W2022338852 @default.
- W2024184462 cites W2025516994 @default.
- W2024184462 cites W2028395645 @default.
- W2024184462 cites W2029145416 @default.
- W2024184462 cites W2031608599 @default.
- W2024184462 cites W2034819393 @default.
- W2024184462 cites W2041061506 @default.
- W2024184462 cites W2042074411 @default.
- W2024184462 cites W2045356499 @default.
- W2024184462 cites W2046937232 @default.
- W2024184462 cites W2047857813 @default.
- W2024184462 cites W2049600106 @default.
- W2024184462 cites W2053021886 @default.
- W2024184462 cites W2053088099 @default.
- W2024184462 cites W2055565344 @default.
- W2024184462 cites W2057509631 @default.
- W2024184462 cites W2058418186 @default.
- W2024184462 cites W2061589288 @default.
- W2024184462 cites W2062523101 @default.
- W2024184462 cites W2063375245 @default.
- W2024184462 cites W2064567361 @default.
- W2024184462 cites W2064714053 @default.
- W2024184462 cites W2065195341 @default.
- W2024184462 cites W2065273135 @default.
- W2024184462 cites W2066673417 @default.
- W2024184462 cites W2067869442 @default.
- W2024184462 cites W2068236781 @default.
- W2024184462 cites W2069229169 @default.
- W2024184462 cites W2071969147 @default.
- W2024184462 cites W2072242052 @default.
- W2024184462 cites W2076889153 @default.
- W2024184462 cites W2077392857 @default.
- W2024184462 cites W2079033059 @default.
- W2024184462 cites W2081120146 @default.
- W2024184462 cites W2082176928 @default.
- W2024184462 cites W2083650114 @default.
- W2024184462 cites W2084130834 @default.
- W2024184462 cites W2085740129 @default.
- W2024184462 cites W2086024600 @default.
- W2024184462 cites W2086824189 @default.
- W2024184462 cites W2087197254 @default.
- W2024184462 cites W2088813136 @default.
- W2024184462 cites W2091700420 @default.
- W2024184462 cites W2091908860 @default.
- W2024184462 cites W2093050775 @default.
- W2024184462 cites W2094009429 @default.
- W2024184462 cites W2095130785 @default.
- W2024184462 cites W2100499557 @default.
- W2024184462 cites W2107904634 @default.
- W2024184462 cites W2114062355 @default.
- W2024184462 cites W2115994794 @default.
- W2024184462 cites W2119447458 @default.
- W2024184462 cites W2125502051 @default.
- W2024184462 cites W2126717288 @default.
- W2024184462 cites W2127756477 @default.
- W2024184462 cites W2146901562 @default.