Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024190915> ?p ?o ?g. }
- W2024190915 endingPage "1265" @default.
- W2024190915 startingPage "1254" @default.
- W2024190915 abstract "The magnesium atom of chlorophylls (Chls) is always five- or six-coordinated within chlorophyll–protein complexes which are the main light-harvesting systems of plants, algae and most photosynthetic bacteria. Due to the presence of stereocenters and the axial ligation of magnesium the two faces of Chls are diastereotopic. It has been previously recognized that the α-configuration having the magnesium ligand on the opposite face of the 17-propionic acid moiety is more frequently encountered and is more stable than the more seldom β-configuration that has the magnesium ligand on the same face [T.S. Balaban, P. Fromme, A.R. Holzwarth, N. Krauβ, V.I. Prokhorenko, Relevance of the diastereotopic ligation of magnesium atoms in chlorophylls in Photosystem I, Biochim. Biophys. Acta (Bioenergetics), 1556 (2002) 197–207; T. Oba, H. Tamiaki, Which side of the π-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth. Res. 74 (2002) 1–10]. In photosystem I only 14 Chls out of a total of 96 are in a β-configuration and these occupy preferential positions around the reaction center. We have now analyzed the α/β dichotomy in the homodimeric photosystem II based on the 2.9 Å resolution crystal structure [A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9 Å resolution: role of quinones, lipids, channels and chloride, Nature Struct. Mol. Biol. 16 (2009) 334–342] and find that out of 35 Chls in each monomer only 9 are definitively in the β-configuration, while 4 are uncertain. Ab initio calculations using the approximate coupled-cluster singles-and-doubles model CC2 [O. Christiansen, H. Koch, P. Jørgensen, The second-order approximate coupled cluster singles and doubles model CC2, Chem. Phys. Lett. 243 (1995) 409–418] now correctly predict the absorption spectra of Chls a and b and conclusively show for histidine, which is the most frequent axial ligand of magnesium in chlorophyll–protein complexes, that only slight differences (< 4 nm) are encountered between the α- and β-configurations. Significant red shifts (up to 50 nm) can, however, be encountered in excitonically coupled β–β-Chl dimers. Surprisingly, in both photosystems I and II very similar “special” β–β dimers are encountered at practically the same distances from P700 and P680, respectively. In purple bacteria LH2, the B850 ring is composed exclusively of such tightly coupled β-bacteriochlorophylls a. A statistical analysis of the close contacts with the protein matrix (< 5 Å) shows significant differences between the α- and β-configurations and the subunit providing the axial magnesium ligand. The present study allows us to conclude that the excitation energy transfer in light-harvesting systems, from a peripheral antenna towards the reaction center, may follow preferential pathways due to structural reasons involving β-ligated Chls." @default.
- W2024190915 created "2016-06-24" @default.
- W2024190915 creator A5013405639 @default.
- W2024190915 creator A5019753746 @default.
- W2024190915 creator A5023040689 @default.
- W2024190915 creator A5028192324 @default.
- W2024190915 creator A5044758922 @default.
- W2024190915 creator A5052844512 @default.
- W2024190915 creator A5085997957 @default.
- W2024190915 date "2009-10-01" @default.
- W2024190915 modified "2023-10-15" @default.
- W2024190915 title "Preferential pathways for light-trapping involving β-ligated chlorophylls" @default.
- W2024190915 cites W1961714136 @default.
- W2024190915 cites W1965212057 @default.
- W2024190915 cites W1972802126 @default.
- W2024190915 cites W1973431005 @default.
- W2024190915 cites W1975155744 @default.
- W2024190915 cites W1977517912 @default.
- W2024190915 cites W1989107097 @default.
- W2024190915 cites W1997907877 @default.
- W2024190915 cites W1999868202 @default.
- W2024190915 cites W2001008936 @default.
- W2024190915 cites W2002465276 @default.
- W2024190915 cites W2005012772 @default.
- W2024190915 cites W2007176314 @default.
- W2024190915 cites W2014911581 @default.
- W2024190915 cites W2017627877 @default.
- W2024190915 cites W2019534558 @default.
- W2024190915 cites W2021863579 @default.
- W2024190915 cites W2023972714 @default.
- W2024190915 cites W2028022118 @default.
- W2024190915 cites W2028378550 @default.
- W2024190915 cites W2032975579 @default.
- W2024190915 cites W2033380911 @default.
- W2024190915 cites W2034078366 @default.
- W2024190915 cites W2035942888 @default.
- W2024190915 cites W2037558498 @default.
- W2024190915 cites W2042905667 @default.
- W2024190915 cites W2049272235 @default.
- W2024190915 cites W2057863409 @default.
- W2024190915 cites W2060234842 @default.
- W2024190915 cites W2060858284 @default.
- W2024190915 cites W2064542583 @default.
- W2024190915 cites W2064798852 @default.
- W2024190915 cites W2065510140 @default.
- W2024190915 cites W2065859138 @default.
- W2024190915 cites W2069486833 @default.
- W2024190915 cites W2078007461 @default.
- W2024190915 cites W2080243490 @default.
- W2024190915 cites W2080471604 @default.
- W2024190915 cites W2083907491 @default.
- W2024190915 cites W2088149320 @default.
- W2024190915 cites W2116359332 @default.
- W2024190915 cites W2120875291 @default.
- W2024190915 cites W2127440814 @default.
- W2024190915 cites W2130479363 @default.
- W2024190915 cites W2137948858 @default.
- W2024190915 cites W2142184469 @default.
- W2024190915 cites W2146818291 @default.
- W2024190915 cites W2151994158 @default.
- W2024190915 cites W2152893165 @default.
- W2024190915 cites W2161241792 @default.
- W2024190915 cites W262617839 @default.
- W2024190915 cites W4211104446 @default.
- W2024190915 doi "https://doi.org/10.1016/j.bbabio.2009.05.010" @default.
- W2024190915 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19481055" @default.
- W2024190915 hasPublicationYear "2009" @default.
- W2024190915 type Work @default.
- W2024190915 sameAs 2024190915 @default.
- W2024190915 citedByCount "23" @default.
- W2024190915 countsByYear W20241909152012 @default.
- W2024190915 countsByYear W20241909152013 @default.
- W2024190915 countsByYear W20241909152014 @default.
- W2024190915 countsByYear W20241909152016 @default.
- W2024190915 countsByYear W20241909152019 @default.
- W2024190915 countsByYear W20241909152020 @default.
- W2024190915 countsByYear W20241909152022 @default.
- W2024190915 countsByYear W20241909152023 @default.
- W2024190915 crossrefType "journal-article" @default.
- W2024190915 hasAuthorship W2024190915A5013405639 @default.
- W2024190915 hasAuthorship W2024190915A5019753746 @default.
- W2024190915 hasAuthorship W2024190915A5023040689 @default.
- W2024190915 hasAuthorship W2024190915A5028192324 @default.
- W2024190915 hasAuthorship W2024190915A5044758922 @default.
- W2024190915 hasAuthorship W2024190915A5052844512 @default.
- W2024190915 hasAuthorship W2024190915A5085997957 @default.
- W2024190915 hasConcept C116569031 @default.
- W2024190915 hasConcept C134195300 @default.
- W2024190915 hasConcept C146686406 @default.
- W2024190915 hasConcept C161790260 @default.
- W2024190915 hasConcept C170493617 @default.
- W2024190915 hasConcept C183688256 @default.
- W2024190915 hasConcept C185592680 @default.
- W2024190915 hasConcept C2776568683 @default.
- W2024190915 hasConcept C55493867 @default.
- W2024190915 hasConcept C71240020 @default.
- W2024190915 hasConcept C75473681 @default.
- W2024190915 hasConcept C8010536 @default.