Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024194472> ?p ?o ?g. }
- W2024194472 endingPage "e76430" @default.
- W2024194472 startingPage "e76430" @default.
- W2024194472 abstract "Bottom trawl survey data are commonly used as a sampling technique to assess the spatial distribution of commercial species. However, this sampling technique does not always correctly detect a species even when it is present, and this can create significant limitations when fitting species distribution models. In this study, we aim to test the relevance of a mixed methodological approach that combines presence-only and presence-absence distribution models. We illustrate this approach using bottom trawl survey data to model the spatial distributions of 27 commercially targeted marine species. We use an environmentally- and geographically-weighted method to simulate pseudo-absence data. The species distributions are modelled using regression kriging, a technique that explicitly incorporates spatial dependence into predictions. Model outputs are then used to identify areas that met the conservation targets for the deployment of artificial anti-trawling reefs. To achieve this, we propose the use of a fuzzy logic framework that accounts for the uncertainty associated with different model predictions. For each species, the predictive accuracy of the model is classified as 'high'. A better result is observed when a large number of occurrences are used to develop the model. The map resulting from the fuzzy overlay shows that three main areas have a high level of agreement with the conservation criteria. These results align with expert opinion, confirming the relevance of the proposed methodology in this study." @default.
- W2024194472 created "2016-06-24" @default.
- W2024194472 creator A5010469522 @default.
- W2024194472 creator A5037706729 @default.
- W2024194472 creator A5041339969 @default.
- W2024194472 creator A5046897074 @default.
- W2024194472 creator A5057166083 @default.
- W2024194472 creator A5058675203 @default.
- W2024194472 creator A5066931706 @default.
- W2024194472 creator A5071965091 @default.
- W2024194472 date "2013-10-11" @default.
- W2024194472 modified "2023-09-23" @default.
- W2024194472 title "The Use of a Predictive Habitat Model and a Fuzzy Logic Approach for Marine Management and Planning" @default.
- W2024194472 cites W1526319989 @default.
- W2024194472 cites W1541650732 @default.
- W2024194472 cites W1552647955 @default.
- W2024194472 cites W1575393310 @default.
- W2024194472 cites W1710732412 @default.
- W2024194472 cites W1733649551 @default.
- W2024194472 cites W1838542636 @default.
- W2024194472 cites W1963600966 @default.
- W2024194472 cites W1963699509 @default.
- W2024194472 cites W1966854199 @default.
- W2024194472 cites W1971164433 @default.
- W2024194472 cites W1972480190 @default.
- W2024194472 cites W1974111260 @default.
- W2024194472 cites W1976053777 @default.
- W2024194472 cites W1990656937 @default.
- W2024194472 cites W2024057738 @default.
- W2024194472 cites W2031488572 @default.
- W2024194472 cites W2035871099 @default.
- W2024194472 cites W2041524156 @default.
- W2024194472 cites W2057611331 @default.
- W2024194472 cites W2058814233 @default.
- W2024194472 cites W2059974661 @default.
- W2024194472 cites W2060298585 @default.
- W2024194472 cites W2062568109 @default.
- W2024194472 cites W2070644382 @default.
- W2024194472 cites W2079018504 @default.
- W2024194472 cites W2080086266 @default.
- W2024194472 cites W2084070973 @default.
- W2024194472 cites W2086104719 @default.
- W2024194472 cites W2091033053 @default.
- W2024194472 cites W2096152168 @default.
- W2024194472 cites W2096836820 @default.
- W2024194472 cites W2097601813 @default.
- W2024194472 cites W2099883419 @default.
- W2024194472 cites W2103919309 @default.
- W2024194472 cites W2104139147 @default.
- W2024194472 cites W2106076904 @default.
- W2024194472 cites W2106962432 @default.
- W2024194472 cites W2111860423 @default.
- W2024194472 cites W2112315008 @default.
- W2024194472 cites W2114630657 @default.
- W2024194472 cites W2115268776 @default.
- W2024194472 cites W2116614208 @default.
- W2024194472 cites W2118436877 @default.
- W2024194472 cites W2118612984 @default.
- W2024194472 cites W2123337039 @default.
- W2024194472 cites W2124645991 @default.
- W2024194472 cites W2134816929 @default.
- W2024194472 cites W2139416101 @default.
- W2024194472 cites W2140188321 @default.
- W2024194472 cites W2141014056 @default.
- W2024194472 cites W2152705131 @default.
- W2024194472 cites W2157814574 @default.
- W2024194472 cites W2161293062 @default.
- W2024194472 cites W2167200133 @default.
- W2024194472 cites W2168213791 @default.
- W2024194472 cites W3125937743 @default.
- W2024194472 cites W4211007335 @default.
- W2024194472 cites W4211243502 @default.
- W2024194472 cites W4301861531 @default.
- W2024194472 cites W7974002 @default.
- W2024194472 doi "https://doi.org/10.1371/journal.pone.0076430" @default.
- W2024194472 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3795769" @default.
- W2024194472 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24146867" @default.
- W2024194472 hasPublicationYear "2013" @default.
- W2024194472 type Work @default.
- W2024194472 sameAs 2024194472 @default.
- W2024194472 citedByCount "42" @default.
- W2024194472 countsByYear W20241944722014 @default.
- W2024194472 countsByYear W20241944722015 @default.
- W2024194472 countsByYear W20241944722016 @default.
- W2024194472 countsByYear W20241944722017 @default.
- W2024194472 countsByYear W20241944722018 @default.
- W2024194472 countsByYear W20241944722019 @default.
- W2024194472 countsByYear W20241944722020 @default.
- W2024194472 countsByYear W20241944722021 @default.
- W2024194472 countsByYear W20241944722022 @default.
- W2024194472 crossrefType "journal-article" @default.
- W2024194472 hasAuthorship W2024194472A5010469522 @default.
- W2024194472 hasAuthorship W2024194472A5037706729 @default.
- W2024194472 hasAuthorship W2024194472A5041339969 @default.
- W2024194472 hasAuthorship W2024194472A5046897074 @default.
- W2024194472 hasAuthorship W2024194472A5057166083 @default.
- W2024194472 hasAuthorship W2024194472A5058675203 @default.
- W2024194472 hasAuthorship W2024194472A5066931706 @default.