Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024195070> ?p ?o ?g. }
- W2024195070 abstract "We perform fully general relativistic simulations of rotating stellar core collapse in three spatial dimensions. The hydrodynamic equations are solved using a high-resolution shock-capturing scheme. A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier et al. The early stage of the collapse is followed by an axisymmetric code. When the stellar core becomes compact enough, we start a three-dimensional simulation adding a bar-mode nonaxisymmetric density perturbation. The axisymmetric simulations are performed for a wide variety of initial conditions changing the rotational velocity profile, parameters of the equations of state, and the total mass. It is clarified that the maximum density, the maximum value of the compactness, and the maximum value of the ratio of the kinetic energy $T$ to the gravitational potential energy $W$ ($ensuremath{beta}ensuremath{equiv}T/W$) achieved during the stellar collapse and bounce depend sensitively on the velocity profile and the total mass of the initial core and equations of state. It is also found that for all the models with a high degree of differential rotation, a funnel structure is formed around the rotational axis after the formation of neutron stars. For selected models in which the maximum value of $ensuremath{beta}$ is larger than $ensuremath{sim}0.27$, three-dimensional numerical simulations are performed. It is found that the bar-mode dynamical instability sets in for the case that the following conditions are satisfied: (i) the progenitor of the stellar core collapse should be rapidly rotating with the initial value of $0.01ensuremath{lesssim}ensuremath{beta}ensuremath{lesssim}0.02$, (ii) the degree of differential rotation for the velocity profile of the initial condition should be sufficiently high, and (iii) a depletion factor of pressure in an early stage of collapse should be large enough to induce a significant contraction to form a compact stellar core for which an efficient spin-up can be achieved surmounting the strong centrifugal force. As a result of the onset of the bar-mode dynamical instabilities, the amplitude of gravitational waves can be by a factor of $ensuremath{sim}10$ larger than that in the axisymmetric collapse. It is found that a dynamical instability with the $m=1$ mode is also induced for the dynamically unstable cases against the bar mode, but the perturbation does not grow significantly and, hence, it does not contribute to an outstanding amplification of gravitational waves. No evidence for fragmentation of the protoneutron stars is found in the first few 10 msec after the bounce." @default.
- W2024195070 created "2016-06-24" @default.
- W2024195070 creator A5037063267 @default.
- W2024195070 creator A5065089998 @default.
- W2024195070 date "2005-01-18" @default.
- W2024195070 modified "2023-10-03" @default.
- W2024195070 title "Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities" @default.
- W2024195070 cites W1963738465 @default.
- W2024195070 cites W1963750344 @default.
- W2024195070 cites W1967843195 @default.
- W2024195070 cites W1971937909 @default.
- W2024195070 cites W1974518280 @default.
- W2024195070 cites W1978976062 @default.
- W2024195070 cites W1980238296 @default.
- W2024195070 cites W1980358517 @default.
- W2024195070 cites W1980603652 @default.
- W2024195070 cites W1981485337 @default.
- W2024195070 cites W1981857259 @default.
- W2024195070 cites W1981920412 @default.
- W2024195070 cites W1983673663 @default.
- W2024195070 cites W1984739943 @default.
- W2024195070 cites W1986179287 @default.
- W2024195070 cites W1986332444 @default.
- W2024195070 cites W1990262081 @default.
- W2024195070 cites W1991440291 @default.
- W2024195070 cites W1996785793 @default.
- W2024195070 cites W1997001557 @default.
- W2024195070 cites W2004401285 @default.
- W2024195070 cites W2008821481 @default.
- W2024195070 cites W2011338041 @default.
- W2024195070 cites W2012216273 @default.
- W2024195070 cites W2012806360 @default.
- W2024195070 cites W2013098163 @default.
- W2024195070 cites W2014039664 @default.
- W2024195070 cites W2014678856 @default.
- W2024195070 cites W2016431778 @default.
- W2024195070 cites W2017359840 @default.
- W2024195070 cites W2026601534 @default.
- W2024195070 cites W2031042483 @default.
- W2024195070 cites W2031388907 @default.
- W2024195070 cites W2033198724 @default.
- W2024195070 cites W2035879704 @default.
- W2024195070 cites W2045849629 @default.
- W2024195070 cites W2047244984 @default.
- W2024195070 cites W2049955461 @default.
- W2024195070 cites W2054708802 @default.
- W2024195070 cites W2058582347 @default.
- W2024195070 cites W2061294627 @default.
- W2024195070 cites W2063437365 @default.
- W2024195070 cites W2066638392 @default.
- W2024195070 cites W2067181265 @default.
- W2024195070 cites W2071347011 @default.
- W2024195070 cites W2075409187 @default.
- W2024195070 cites W2077310516 @default.
- W2024195070 cites W2086199187 @default.
- W2024195070 cites W2088941394 @default.
- W2024195070 cites W2089337959 @default.
- W2024195070 cites W2092965843 @default.
- W2024195070 cites W2094255511 @default.
- W2024195070 cites W2100152373 @default.
- W2024195070 cites W2101255378 @default.
- W2024195070 cites W2105635519 @default.
- W2024195070 cites W2111626561 @default.
- W2024195070 cites W2115323839 @default.
- W2024195070 cites W2119834267 @default.
- W2024195070 cites W2121382289 @default.
- W2024195070 cites W2134255669 @default.
- W2024195070 cites W2137702713 @default.
- W2024195070 cites W2153120527 @default.
- W2024195070 cites W2162212123 @default.
- W2024195070 cites W2171163801 @default.
- W2024195070 cites W2179614604 @default.
- W2024195070 cites W2498126760 @default.
- W2024195070 cites W3099014370 @default.
- W2024195070 cites W3099652661 @default.
- W2024195070 cites W3100332219 @default.
- W2024195070 cites W3100579590 @default.
- W2024195070 cites W3101173980 @default.
- W2024195070 cites W3104246461 @default.
- W2024195070 cites W3104901150 @default.
- W2024195070 cites W3105995835 @default.
- W2024195070 cites W3125160660 @default.
- W2024195070 cites W36690651 @default.
- W2024195070 cites W4211157367 @default.
- W2024195070 cites W4240909640 @default.
- W2024195070 doi "https://doi.org/10.1103/physrevd.71.024014" @default.
- W2024195070 hasPublicationYear "2005" @default.
- W2024195070 type Work @default.
- W2024195070 sameAs 2024195070 @default.
- W2024195070 citedByCount "109" @default.
- W2024195070 countsByYear W20241950702012 @default.
- W2024195070 countsByYear W20241950702013 @default.
- W2024195070 countsByYear W20241950702014 @default.
- W2024195070 countsByYear W20241950702015 @default.
- W2024195070 countsByYear W20241950702016 @default.
- W2024195070 countsByYear W20241950702017 @default.
- W2024195070 countsByYear W20241950702018 @default.
- W2024195070 countsByYear W20241950702019 @default.
- W2024195070 countsByYear W20241950702020 @default.
- W2024195070 countsByYear W20241950702021 @default.