Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024199384> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2024199384 endingPage "4543" @default.
- W2024199384 startingPage "4537" @default.
- W2024199384 abstract "Software defect predictors which classify the software modules into defect-prone and not-defect-prone classes are effective tools to maintain the high quality of software products. The early prediction of defect-proneness of the modules can allow software developers to allocate the limited resources on those defect-prone modules such that high quality software can be produced on time and within budget. In the process of software defect prediction, the misclassification of defect-prone modules generally incurs much higher cost than the misclassification of not-defect-prone ones. Most of the previously developed predication models do not consider this cost issue. In this paper, three cost-sensitive boosting algorithms are studied to boost neural networks for software defect prediction. The first algorithm based on threshold-moving tries to move the classification threshold towards the not-fault-prone modules such that more fault-prone modules can be classified correctly. The other two weight-updating based algorithms incorporate the misclassification costs into the weight-update rule of boosting procedure such that the algorithms boost more weights on the samples associated with misclassified defect-prone modules. The performances of the three algorithms are evaluated by using four datasets from NASA projects in terms of a singular measure, the Normalized Expected Cost of Misclassification (NECM). The experimental results suggest that threshold-moving is the best choice to build cost-sensitive software defect prediction models with boosted neural networks among the three algorithms studied, especially for the datasets from projects developed by object-oriented language." @default.
- W2024199384 created "2016-06-24" @default.
- W2024199384 creator A5029988326 @default.
- W2024199384 date "2010-06-01" @default.
- W2024199384 modified "2023-10-02" @default.
- W2024199384 title "Cost-sensitive boosting neural networks for software defect prediction" @default.
- W2024199384 cites W1964560060 @default.
- W2024199384 cites W1964962870 @default.
- W2024199384 cites W1982052293 @default.
- W2024199384 cites W1988790447 @default.
- W2024199384 cites W2012878626 @default.
- W2024199384 cites W2021503621 @default.
- W2024199384 cites W2029833477 @default.
- W2024199384 cites W2034445489 @default.
- W2024199384 cites W2039081830 @default.
- W2024199384 cites W2057780988 @default.
- W2024199384 cites W2070534370 @default.
- W2024199384 cites W2087339977 @default.
- W2024199384 cites W2103614420 @default.
- W2024199384 cites W2114077012 @default.
- W2024199384 cites W2119191234 @default.
- W2024199384 cites W2120738100 @default.
- W2024199384 cites W2121866145 @default.
- W2024199384 cites W2123127356 @default.
- W2024199384 cites W2128666163 @default.
- W2024199384 cites W2130128436 @default.
- W2024199384 cites W2150963875 @default.
- W2024199384 cites W2163590173 @default.
- W2024199384 cites W2164921999 @default.
- W2024199384 cites W3141989311 @default.
- W2024199384 doi "https://doi.org/10.1016/j.eswa.2009.12.056" @default.
- W2024199384 hasPublicationYear "2010" @default.
- W2024199384 type Work @default.
- W2024199384 sameAs 2024199384 @default.
- W2024199384 citedByCount "175" @default.
- W2024199384 countsByYear W20241993842012 @default.
- W2024199384 countsByYear W20241993842013 @default.
- W2024199384 countsByYear W20241993842014 @default.
- W2024199384 countsByYear W20241993842015 @default.
- W2024199384 countsByYear W20241993842016 @default.
- W2024199384 countsByYear W20241993842017 @default.
- W2024199384 countsByYear W20241993842018 @default.
- W2024199384 countsByYear W20241993842019 @default.
- W2024199384 countsByYear W20241993842020 @default.
- W2024199384 countsByYear W20241993842021 @default.
- W2024199384 countsByYear W20241993842022 @default.
- W2024199384 countsByYear W20241993842023 @default.
- W2024199384 crossrefType "journal-article" @default.
- W2024199384 hasAuthorship W2024199384A5029988326 @default.
- W2024199384 hasConcept C111919701 @default.
- W2024199384 hasConcept C119857082 @default.
- W2024199384 hasConcept C124101348 @default.
- W2024199384 hasConcept C154945302 @default.
- W2024199384 hasConcept C2777904410 @default.
- W2024199384 hasConcept C41008148 @default.
- W2024199384 hasConcept C46686674 @default.
- W2024199384 hasConcept C50644808 @default.
- W2024199384 hasConceptScore W2024199384C111919701 @default.
- W2024199384 hasConceptScore W2024199384C119857082 @default.
- W2024199384 hasConceptScore W2024199384C124101348 @default.
- W2024199384 hasConceptScore W2024199384C154945302 @default.
- W2024199384 hasConceptScore W2024199384C2777904410 @default.
- W2024199384 hasConceptScore W2024199384C41008148 @default.
- W2024199384 hasConceptScore W2024199384C46686674 @default.
- W2024199384 hasConceptScore W2024199384C50644808 @default.
- W2024199384 hasIssue "6" @default.
- W2024199384 hasLocation W20241993841 @default.
- W2024199384 hasOpenAccess W2024199384 @default.
- W2024199384 hasPrimaryLocation W20241993841 @default.
- W2024199384 hasRelatedWork W1996541855 @default.
- W2024199384 hasRelatedWork W2954428433 @default.
- W2024199384 hasRelatedWork W3151529617 @default.
- W2024199384 hasRelatedWork W3159988495 @default.
- W2024199384 hasRelatedWork W3195168932 @default.
- W2024199384 hasRelatedWork W3200719183 @default.
- W2024199384 hasRelatedWork W4292969247 @default.
- W2024199384 hasRelatedWork W4293069612 @default.
- W2024199384 hasRelatedWork W4313488044 @default.
- W2024199384 hasRelatedWork W1629725936 @default.
- W2024199384 hasVolume "37" @default.
- W2024199384 isParatext "false" @default.
- W2024199384 isRetracted "false" @default.
- W2024199384 magId "2024199384" @default.
- W2024199384 workType "article" @default.