Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024207402> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2024207402 endingPage "49" @default.
- W2024207402 startingPage "45" @default.
- W2024207402 abstract "Neural networks are physical cellular systems that can acquire, store, and utilise knowledge obtained by experience. They have a number of performance characteristics in common with biological neural networks or the human brain. They can simulate the nervous systems of living animals that work differently from conventional computing and analyse, compute and solve complex practical problems using computers. Studies show that neural networks can be used to solve a great number of practical problems that occur in modelling, predictions, assessments, recognition, and image processing. Especially, neural networks are suitable for application to problems where some results are known but the manner in which these results can be achieved is not known or is difficult to implement; or where the results themselves are not known.Lithofacies are, by definition, determined directly from the rock body, either an outcrop or conventional core. However, in subsurface studies it is important to be able to estimate the lithofacies of uncored wells or sections of wells. This is commonly done in a somewhat subjective manner using a wireline-log suite, and often using only the gamma-ray log. This paper presents an application of neural networking to identify lithofacies from wireline logs in a lithologically complex formation. The methodology provides a considerably more thorough, consistent, and less subjective means by which to estimate lithofacies, and indeed depositional facies, than is currently in use. Only conventional wireline-logs were available in this study. Nonetheless, it was possible to establish an identification network of lithofacies by integrating error back propagation and self-organising mapping algorithms. This network was applied to identify lithofacies in six wells. The results indicate that, given a reliable training set which is provided from a detailed lithofacies analysis of conventional cores within the formation under study, it is possible to estimate lithofacies from conventional well logs by means of neural network techniques." @default.
- W2024207402 created "2016-06-24" @default.
- W2024207402 creator A5003146211 @default.
- W2024207402 creator A5041522926 @default.
- W2024207402 creator A5081806060 @default.
- W2024207402 date "1999-03-01" @default.
- W2024207402 modified "2023-09-23" @default.
- W2024207402 title "Application of neural networks to identify lithofacies from well logs" @default.
- W2024207402 cites W1975418543 @default.
- W2024207402 cites W2333716020 @default.
- W2024207402 cites W4299956745 @default.
- W2024207402 doi "https://doi.org/10.1071/eg999045" @default.
- W2024207402 hasPublicationYear "1999" @default.
- W2024207402 type Work @default.
- W2024207402 sameAs 2024207402 @default.
- W2024207402 citedByCount "15" @default.
- W2024207402 countsByYear W20242074022012 @default.
- W2024207402 countsByYear W20242074022013 @default.
- W2024207402 countsByYear W20242074022015 @default.
- W2024207402 countsByYear W20242074022016 @default.
- W2024207402 countsByYear W20242074022018 @default.
- W2024207402 countsByYear W20242074022019 @default.
- W2024207402 countsByYear W20242074022020 @default.
- W2024207402 countsByYear W20242074022021 @default.
- W2024207402 countsByYear W20242074022023 @default.
- W2024207402 crossrefType "journal-article" @default.
- W2024207402 hasAuthorship W2024207402A5003146211 @default.
- W2024207402 hasAuthorship W2024207402A5041522926 @default.
- W2024207402 hasAuthorship W2024207402A5081806060 @default.
- W2024207402 hasConcept C109007969 @default.
- W2024207402 hasConcept C116834253 @default.
- W2024207402 hasConcept C126753816 @default.
- W2024207402 hasConcept C127313418 @default.
- W2024207402 hasConcept C146588470 @default.
- W2024207402 hasConcept C151730666 @default.
- W2024207402 hasConcept C154945302 @default.
- W2024207402 hasConcept C166957645 @default.
- W2024207402 hasConcept C169212394 @default.
- W2024207402 hasConcept C2776951270 @default.
- W2024207402 hasConcept C35817400 @default.
- W2024207402 hasConcept C41008148 @default.
- W2024207402 hasConcept C50644808 @default.
- W2024207402 hasConcept C555944384 @default.
- W2024207402 hasConcept C59822182 @default.
- W2024207402 hasConcept C76155785 @default.
- W2024207402 hasConcept C79581498 @default.
- W2024207402 hasConcept C8058405 @default.
- W2024207402 hasConcept C86803240 @default.
- W2024207402 hasConcept C95457728 @default.
- W2024207402 hasConceptScore W2024207402C109007969 @default.
- W2024207402 hasConceptScore W2024207402C116834253 @default.
- W2024207402 hasConceptScore W2024207402C126753816 @default.
- W2024207402 hasConceptScore W2024207402C127313418 @default.
- W2024207402 hasConceptScore W2024207402C146588470 @default.
- W2024207402 hasConceptScore W2024207402C151730666 @default.
- W2024207402 hasConceptScore W2024207402C154945302 @default.
- W2024207402 hasConceptScore W2024207402C166957645 @default.
- W2024207402 hasConceptScore W2024207402C169212394 @default.
- W2024207402 hasConceptScore W2024207402C2776951270 @default.
- W2024207402 hasConceptScore W2024207402C35817400 @default.
- W2024207402 hasConceptScore W2024207402C41008148 @default.
- W2024207402 hasConceptScore W2024207402C50644808 @default.
- W2024207402 hasConceptScore W2024207402C555944384 @default.
- W2024207402 hasConceptScore W2024207402C59822182 @default.
- W2024207402 hasConceptScore W2024207402C76155785 @default.
- W2024207402 hasConceptScore W2024207402C79581498 @default.
- W2024207402 hasConceptScore W2024207402C8058405 @default.
- W2024207402 hasConceptScore W2024207402C86803240 @default.
- W2024207402 hasConceptScore W2024207402C95457728 @default.
- W2024207402 hasIssue "1-2" @default.
- W2024207402 hasLocation W20242074021 @default.
- W2024207402 hasOpenAccess W2024207402 @default.
- W2024207402 hasPrimaryLocation W20242074021 @default.
- W2024207402 hasRelatedWork W2071422437 @default.
- W2024207402 hasRelatedWork W2150948392 @default.
- W2024207402 hasRelatedWork W2175165372 @default.
- W2024207402 hasRelatedWork W2372723768 @default.
- W2024207402 hasRelatedWork W2374932493 @default.
- W2024207402 hasRelatedWork W2381195630 @default.
- W2024207402 hasRelatedWork W2995010628 @default.
- W2024207402 hasRelatedWork W3162725728 @default.
- W2024207402 hasRelatedWork W4235176791 @default.
- W2024207402 hasRelatedWork W769467370 @default.
- W2024207402 hasVolume "30" @default.
- W2024207402 isParatext "false" @default.
- W2024207402 isRetracted "false" @default.
- W2024207402 magId "2024207402" @default.
- W2024207402 workType "article" @default.