Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024224096> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2024224096 abstract "Learning a ranking function is important for numerous tasks such as information retrieval (IR), question answering, and product recommendation. For example, in information retrieval, a Web search engine is required to rank and return a set of documents relevant to a query issued by a user. We propose RankDE, a ranking method that uses differential evolution (DE) to learn a ranking function to rank a list of documents retrieved by a Web search engine. To the best of our knowledge, the proposed method is the first DE-based approach to learn a ranking function for IR. We evaluate the proposed method using LETOR dataset, a standard benchmark dataset for training and evaluating ranking functions for IR. In our experiments, the proposed method significantly outperforms previously proposed rank learning methods that use evolutionary computation algorithms such as Particle Swam Optimization (PSO) and Genetic Programming (GP), achieving a statistically significant mean average precision (MAP) of 0.339 on TD2003 dataset and 0.430 on the TD2004 dataset. Moreover, the proposed method shows comparable results to the state-of-the-art non-evolutionary computational approaches on this benchmark dataset. We analyze the feature weights learnt by the proposed method to better understand the salient features for the task of learning to rank for information retrieval." @default.
- W2024224096 created "2016-06-24" @default.
- W2024224096 creator A5005925953 @default.
- W2024224096 creator A5008309887 @default.
- W2024224096 creator A5073503574 @default.
- W2024224096 date "2011-07-12" @default.
- W2024224096 modified "2023-10-03" @default.
- W2024224096 title "RankDE" @default.
- W2024224096 cites W1490180010 @default.
- W2024224096 cites W1492713888 @default.
- W2024224096 cites W1595159159 @default.
- W2024224096 cites W1967160701 @default.
- W2024224096 cites W1972594981 @default.
- W2024224096 cites W1973500996 @default.
- W2024224096 cites W1988790447 @default.
- W2024224096 cites W2009196115 @default.
- W2024224096 cites W2009607991 @default.
- W2024224096 cites W2047778511 @default.
- W2024224096 cites W2054654499 @default.
- W2024224096 cites W2058475745 @default.
- W2024224096 cites W2076470289 @default.
- W2024224096 cites W2089419496 @default.
- W2024224096 cites W2091158010 @default.
- W2024224096 cites W2096772800 @default.
- W2024224096 cites W2102882034 @default.
- W2024224096 cites W2103179193 @default.
- W2024224096 cites W2108862644 @default.
- W2024224096 cites W2138621811 @default.
- W2024224096 cites W2138790992 @default.
- W2024224096 cites W2143331230 @default.
- W2024224096 doi "https://doi.org/10.1145/2001576.2001814" @default.
- W2024224096 hasPublicationYear "2011" @default.
- W2024224096 type Work @default.
- W2024224096 sameAs 2024224096 @default.
- W2024224096 citedByCount "17" @default.
- W2024224096 countsByYear W20242240962012 @default.
- W2024224096 countsByYear W20242240962013 @default.
- W2024224096 countsByYear W20242240962014 @default.
- W2024224096 countsByYear W20242240962015 @default.
- W2024224096 countsByYear W20242240962016 @default.
- W2024224096 countsByYear W20242240962017 @default.
- W2024224096 countsByYear W20242240962018 @default.
- W2024224096 countsByYear W20242240962020 @default.
- W2024224096 countsByYear W20242240962021 @default.
- W2024224096 countsByYear W20242240962022 @default.
- W2024224096 crossrefType "proceedings-article" @default.
- W2024224096 hasAuthorship W2024224096A5005925953 @default.
- W2024224096 hasAuthorship W2024224096A5008309887 @default.
- W2024224096 hasAuthorship W2024224096A5073503574 @default.
- W2024224096 hasConcept C41008148 @default.
- W2024224096 hasConceptScore W2024224096C41008148 @default.
- W2024224096 hasLocation W20242240961 @default.
- W2024224096 hasOpenAccess W2024224096 @default.
- W2024224096 hasPrimaryLocation W20242240961 @default.
- W2024224096 hasRelatedWork W2093578348 @default.
- W2024224096 hasRelatedWork W2350741829 @default.
- W2024224096 hasRelatedWork W2358668433 @default.
- W2024224096 hasRelatedWork W2376932109 @default.
- W2024224096 hasRelatedWork W2382290278 @default.
- W2024224096 hasRelatedWork W2390279801 @default.
- W2024224096 hasRelatedWork W2748952813 @default.
- W2024224096 hasRelatedWork W2766271392 @default.
- W2024224096 hasRelatedWork W2899084033 @default.
- W2024224096 hasRelatedWork W3004735627 @default.
- W2024224096 isParatext "false" @default.
- W2024224096 isRetracted "false" @default.
- W2024224096 magId "2024224096" @default.
- W2024224096 workType "article" @default.