Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024229465> ?p ?o ?g. }
- W2024229465 endingPage "38" @default.
- W2024229465 startingPage "38" @default.
- W2024229465 abstract "A century ago, Chestnut Blight Disease (CBD) devastated the American chestnut. Backcross breeding has been underway to introgress resistance from Chinese chestnut into surviving American chestnut genotypes. Development of genomic resources for the family Fagaceae, has focused in this project on Castanea mollissima Blume (Chinese chestnut) and Castanea dentata (Marsh.) Borkh (American chestnut) to aid in the backcross breeding effort and in the eventual identification of blight resistance genes through genomic sequencing and map based cloning. A previous study reported partial characterization of the transcriptomes from these two species. Here, further analyses of a larger dataset and assemblies including both 454 and capillary sequences were performed and defense related genes with differential transcript abundance (GDTA) in canker versus healthy stem tissues were identified. Over one and a half million cDNA reads were assembled into 34,800 transcript contigs from American chestnut and 48,335 transcript contigs from Chinese chestnut. Chestnut cDNA showed higher coding sequence similarity to genes in other woody plants than in herbaceous species. The number of genes tagged, the length of coding sequences, and the numbers of tagged members within gene families showed that the cDNA dataset provides a good resource for studying the American and Chinese chestnut transcriptomes. In silico analysis of transcript abundance identified hundreds of GDTA in canker versus healthy stem tissues. A significant number of additional DTA genes involved in the defense-response not reported in a previous study were identified here. These DTA genes belong to various pathways involving cell wall biosynthesis, reactive oxygen species (ROS), salicylic acid (SA), ethylene, jasmonic acid (JA), abscissic acid (ABA), and hormone signalling. DTA genes were also identified in the hypersensitive response and programmed cell death (PCD) pathways. These DTA genes are candidates for host resistance to the chestnut blight fungus, Cryphonectria parasitica. Our data allowed the identification of many genes and gene network candidates for host resistance to the chestnut blight fungus, Cryphonectria parasitica. The similar set of GDTAs in American chestnut and Chinese chestnut suggests that the variation in sensitivity to this pathogen between these species may be the result of different timing and amplitude of the response of the two to the pathogen infection. Resources developed in this study are useful for functional genomics, comparative genomics, resistance breeding and phylogenetics in the Fagaceae." @default.
- W2024229465 created "2016-06-24" @default.
- W2024229465 creator A5013878850 @default.
- W2024229465 creator A5015114586 @default.
- W2024229465 creator A5015194426 @default.
- W2024229465 creator A5016888574 @default.
- W2024229465 creator A5021355138 @default.
- W2024229465 creator A5023347416 @default.
- W2024229465 creator A5029476998 @default.
- W2024229465 creator A5030044722 @default.
- W2024229465 creator A5039923762 @default.
- W2024229465 creator A5040118192 @default.
- W2024229465 creator A5045723980 @default.
- W2024229465 creator A5068295354 @default.
- W2024229465 creator A5069779855 @default.
- W2024229465 creator A5088865524 @default.
- W2024229465 creator A5091825431 @default.
- W2024229465 date "2012-01-01" @default.
- W2024229465 modified "2023-10-12" @default.
- W2024229465 title "Chestnut resistance to the blight disease: insights from transcriptome analysis" @default.
- W2024229465 cites W1957893438 @default.
- W2024229465 cites W1961916822 @default.
- W2024229465 cites W1966893777 @default.
- W2024229465 cites W1974116356 @default.
- W2024229465 cites W1992550017 @default.
- W2024229465 cites W1993584679 @default.
- W2024229465 cites W1995174026 @default.
- W2024229465 cites W1995828353 @default.
- W2024229465 cites W2013502592 @default.
- W2024229465 cites W2018712761 @default.
- W2024229465 cites W2030010251 @default.
- W2024229465 cites W2033707520 @default.
- W2024229465 cites W2042865896 @default.
- W2024229465 cites W2045098138 @default.
- W2024229465 cites W2056833433 @default.
- W2024229465 cites W2063888937 @default.
- W2024229465 cites W2064398008 @default.
- W2024229465 cites W2064576007 @default.
- W2024229465 cites W2065410982 @default.
- W2024229465 cites W2071961524 @default.
- W2024229465 cites W2088319954 @default.
- W2024229465 cites W2089192680 @default.
- W2024229465 cites W2091781199 @default.
- W2024229465 cites W2092686336 @default.
- W2024229465 cites W2092809755 @default.
- W2024229465 cites W2100184190 @default.
- W2024229465 cites W2101021876 @default.
- W2024229465 cites W2102992354 @default.
- W2024229465 cites W2115707432 @default.
- W2024229465 cites W2117855730 @default.
- W2024229465 cites W2119034410 @default.
- W2024229465 cites W2121711582 @default.
- W2024229465 cites W2124911790 @default.
- W2024229465 cites W2138092581 @default.
- W2024229465 cites W2148197500 @default.
- W2024229465 cites W2158427156 @default.
- W2024229465 cites W2158722151 @default.
- W2024229465 cites W2159644906 @default.
- W2024229465 cites W2161393048 @default.
- W2024229465 cites W2170458932 @default.
- W2024229465 cites W2328668615 @default.
- W2024229465 cites W24648360 @default.
- W2024229465 doi "https://doi.org/10.1186/1471-2229-12-38" @default.
- W2024229465 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3376029" @default.
- W2024229465 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22429310" @default.
- W2024229465 hasPublicationYear "2012" @default.
- W2024229465 type Work @default.
- W2024229465 sameAs 2024229465 @default.
- W2024229465 citedByCount "68" @default.
- W2024229465 countsByYear W20242294652012 @default.
- W2024229465 countsByYear W20242294652013 @default.
- W2024229465 countsByYear W20242294652014 @default.
- W2024229465 countsByYear W20242294652015 @default.
- W2024229465 countsByYear W20242294652016 @default.
- W2024229465 countsByYear W20242294652017 @default.
- W2024229465 countsByYear W20242294652018 @default.
- W2024229465 countsByYear W20242294652019 @default.
- W2024229465 countsByYear W20242294652020 @default.
- W2024229465 countsByYear W20242294652021 @default.
- W2024229465 countsByYear W20242294652022 @default.
- W2024229465 countsByYear W20242294652023 @default.
- W2024229465 crossrefType "journal-article" @default.
- W2024229465 hasAuthorship W2024229465A5013878850 @default.
- W2024229465 hasAuthorship W2024229465A5015114586 @default.
- W2024229465 hasAuthorship W2024229465A5015194426 @default.
- W2024229465 hasAuthorship W2024229465A5016888574 @default.
- W2024229465 hasAuthorship W2024229465A5021355138 @default.
- W2024229465 hasAuthorship W2024229465A5023347416 @default.
- W2024229465 hasAuthorship W2024229465A5029476998 @default.
- W2024229465 hasAuthorship W2024229465A5030044722 @default.
- W2024229465 hasAuthorship W2024229465A5039923762 @default.
- W2024229465 hasAuthorship W2024229465A5040118192 @default.
- W2024229465 hasAuthorship W2024229465A5045723980 @default.
- W2024229465 hasAuthorship W2024229465A5068295354 @default.
- W2024229465 hasAuthorship W2024229465A5069779855 @default.
- W2024229465 hasAuthorship W2024229465A5088865524 @default.
- W2024229465 hasAuthorship W2024229465A5091825431 @default.
- W2024229465 hasBestOaLocation W20242294651 @default.