Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024254884> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2024254884 abstract "One essential component of resilient cyber applications is the ability to detect adversaries and protect systems with the same flexibility adversaries will use to achieve their goals. Current detection techniques do not enable this degree of flexibility because most existing applications are built using exact or regular-expression matching to libraries of rule sets. Further, network traffic defies traditional cyber security approaches that focus on limiting access based on the use of passwords and examination of lists of installed or downloaded programs. These approaches do not readily apply to network traffic occurring beyond the access control point, and when the data in question are combined control and payload data of ever increasing speed and volume. Manual analysis of network traffic is not normally possible because of the magnitude of the data that is being exchanged and the length of time that this analysis takes. At the same time, using an exact matching scheme to identify malicious traffic in real time often fails because the lists against which such searches must operate grow too large. In this work, we propose an adaptation of biosequence alignment as an alternative method for cyber network detection based on similarity-measuring algorithms for gene sequence analysis. These methods are ideal because they were designed to identify similar but non-identical sequences. We demonstrate that our method is generally applicable to the problem of network traffic analysis by illustrating its use in two different areas based on different attributes of network traffic. Our approach provides a logical framework for organizing large collections of network data, prioritizing traffic of interest to human analysts, and makes it possible to discover traffic signatures without the bias introduced by expert-directed signature generation. Pattern recognition on reduced representations of network traffic offers a fast, efficient, and more robust way to detect anomalies." @default.
- W2024254884 created "2016-06-24" @default.
- W2024254884 creator A5013287908 @default.
- W2024254884 creator A5036454888 @default.
- W2024254884 creator A5040788704 @default.
- W2024254884 creator A5042797817 @default.
- W2024254884 creator A5046097460 @default.
- W2024254884 date "2013-08-01" @default.
- W2024254884 modified "2023-10-14" @default.
- W2024254884 title "LINEBACkER: Bio-inspired data reduction toward real time network traffic analysis" @default.
- W2024254884 cites W1542361231 @default.
- W2024254884 cites W1970837734 @default.
- W2024254884 cites W2001056218 @default.
- W2024254884 cites W2042378654 @default.
- W2024254884 cites W2049349724 @default.
- W2024254884 cites W2055043387 @default.
- W2024254884 cites W2091665271 @default.
- W2024254884 cites W2108934250 @default.
- W2024254884 cites W2127774996 @default.
- W2024254884 cites W2155957132 @default.
- W2024254884 cites W2158714788 @default.
- W2024254884 cites W2172031170 @default.
- W2024254884 doi "https://doi.org/10.1109/isrcs.2013.6623771" @default.
- W2024254884 hasPublicationYear "2013" @default.
- W2024254884 type Work @default.
- W2024254884 sameAs 2024254884 @default.
- W2024254884 citedByCount "3" @default.
- W2024254884 countsByYear W20242548842014 @default.
- W2024254884 countsByYear W20242548842015 @default.
- W2024254884 countsByYear W20242548842017 @default.
- W2024254884 crossrefType "proceedings-article" @default.
- W2024254884 hasAuthorship W2024254884A5013287908 @default.
- W2024254884 hasAuthorship W2024254884A5036454888 @default.
- W2024254884 hasAuthorship W2024254884A5040788704 @default.
- W2024254884 hasAuthorship W2024254884A5042797817 @default.
- W2024254884 hasAuthorship W2024254884A5046097460 @default.
- W2024254884 hasConcept C105795698 @default.
- W2024254884 hasConcept C120314980 @default.
- W2024254884 hasConcept C120665830 @default.
- W2024254884 hasConcept C121332964 @default.
- W2024254884 hasConcept C124101348 @default.
- W2024254884 hasConcept C134066672 @default.
- W2024254884 hasConcept C158379750 @default.
- W2024254884 hasConcept C165064840 @default.
- W2024254884 hasConcept C176715033 @default.
- W2024254884 hasConcept C182590292 @default.
- W2024254884 hasConcept C192209626 @default.
- W2024254884 hasConcept C204679922 @default.
- W2024254884 hasConcept C2780598303 @default.
- W2024254884 hasConcept C2781317605 @default.
- W2024254884 hasConcept C31258907 @default.
- W2024254884 hasConcept C33923547 @default.
- W2024254884 hasConcept C41008148 @default.
- W2024254884 hasConceptScore W2024254884C105795698 @default.
- W2024254884 hasConceptScore W2024254884C120314980 @default.
- W2024254884 hasConceptScore W2024254884C120665830 @default.
- W2024254884 hasConceptScore W2024254884C121332964 @default.
- W2024254884 hasConceptScore W2024254884C124101348 @default.
- W2024254884 hasConceptScore W2024254884C134066672 @default.
- W2024254884 hasConceptScore W2024254884C158379750 @default.
- W2024254884 hasConceptScore W2024254884C165064840 @default.
- W2024254884 hasConceptScore W2024254884C176715033 @default.
- W2024254884 hasConceptScore W2024254884C182590292 @default.
- W2024254884 hasConceptScore W2024254884C192209626 @default.
- W2024254884 hasConceptScore W2024254884C204679922 @default.
- W2024254884 hasConceptScore W2024254884C2780598303 @default.
- W2024254884 hasConceptScore W2024254884C2781317605 @default.
- W2024254884 hasConceptScore W2024254884C31258907 @default.
- W2024254884 hasConceptScore W2024254884C33923547 @default.
- W2024254884 hasConceptScore W2024254884C41008148 @default.
- W2024254884 hasLocation W20242548841 @default.
- W2024254884 hasOpenAccess W2024254884 @default.
- W2024254884 hasPrimaryLocation W20242548841 @default.
- W2024254884 hasRelatedWork W2015896281 @default.
- W2024254884 hasRelatedWork W2017644937 @default.
- W2024254884 hasRelatedWork W2035910798 @default.
- W2024254884 hasRelatedWork W2043543195 @default.
- W2024254884 hasRelatedWork W2218146931 @default.
- W2024254884 hasRelatedWork W2357480456 @default.
- W2024254884 hasRelatedWork W2359152651 @default.
- W2024254884 hasRelatedWork W2797286879 @default.
- W2024254884 hasRelatedWork W2928278548 @default.
- W2024254884 hasRelatedWork W4285816602 @default.
- W2024254884 isParatext "false" @default.
- W2024254884 isRetracted "false" @default.
- W2024254884 magId "2024254884" @default.
- W2024254884 workType "article" @default.