Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024264945> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2024264945 endingPage "e45140" @default.
- W2024264945 startingPage "e45140" @default.
- W2024264945 abstract "Litter decomposition rate (k) is typically estimated from proportional litter mass loss data using models that assume constant, normally distributed errors. However, such data often show non-normal errors with reduced variance near bounds (0 or 1), potentially leading to biased k estimates. We compared the performance of nonlinear regression using the beta distribution, which is well-suited to bounded data and this type of heteroscedasticity, to standard nonlinear regression (normal errors) on simulated and real litter decomposition data. Although the beta model often provided better fits to the simulated data (based on the corrected Akaike Information Criterion, AICc), standard nonlinear regression was robust to violation of homoscedasticity and gave equally or more accurate k estimates as nonlinear beta regression. Our simulation results also suggest that k estimates will be most accurate when study length captures mid to late stage decomposition (50–80% mass loss) and the number of measurements through time is ≥5. Regression method and data transformation choices had the smallest impact on k estimates during mid and late stage decomposition. Estimates of k were more variable among methods and generally less accurate during early and end stage decomposition. With real data, neither model was predominately best; in most cases the models were indistinguishable based on AICc, and gave similar k estimates. However, when decomposition rates were high, normal and beta model k estimates often diverged substantially. Therefore, we recommend a pragmatic approach where both models are compared and the best is selected for a given data set. Alternatively, both models may be used via model averaging to develop weighted parameter estimates. We provide code to perform nonlinear beta regression with freely available software." @default.
- W2024264945 created "2016-06-24" @default.
- W2024264945 creator A5015964421 @default.
- W2024264945 creator A5034560073 @default.
- W2024264945 creator A5074298021 @default.
- W2024264945 date "2012-09-25" @default.
- W2024264945 modified "2023-09-26" @default.
- W2024264945 title "Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression" @default.
- W2024264945 cites W1518897246 @default.
- W2024264945 cites W1912619671 @default.
- W2024264945 cites W1987653205 @default.
- W2024264945 cites W1989537995 @default.
- W2024264945 cites W2001983204 @default.
- W2024264945 cites W2038698475 @default.
- W2024264945 cites W2040490772 @default.
- W2024264945 cites W2060940329 @default.
- W2024264945 cites W2081029895 @default.
- W2024264945 cites W2093680306 @default.
- W2024264945 cites W2114616170 @default.
- W2024264945 cites W2128267494 @default.
- W2024264945 cites W2137270765 @default.
- W2024264945 cites W2147610616 @default.
- W2024264945 cites W2158196600 @default.
- W2024264945 cites W2167647238 @default.
- W2024264945 cites W2787850203 @default.
- W2024264945 cites W70948400 @default.
- W2024264945 doi "https://doi.org/10.1371/journal.pone.0045140" @default.
- W2024264945 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3458010" @default.
- W2024264945 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23049771" @default.
- W2024264945 hasPublicationYear "2012" @default.
- W2024264945 type Work @default.
- W2024264945 sameAs 2024264945 @default.
- W2024264945 citedByCount "8" @default.
- W2024264945 countsByYear W20242649452013 @default.
- W2024264945 countsByYear W20242649452016 @default.
- W2024264945 countsByYear W20242649452021 @default.
- W2024264945 countsByYear W20242649452022 @default.
- W2024264945 crossrefType "journal-article" @default.
- W2024264945 hasAuthorship W2024264945A5015964421 @default.
- W2024264945 hasAuthorship W2024264945A5034560073 @default.
- W2024264945 hasAuthorship W2024264945A5074298021 @default.
- W2024264945 hasBestOaLocation W20242649451 @default.
- W2024264945 hasConcept C101104100 @default.
- W2024264945 hasConcept C104409967 @default.
- W2024264945 hasConcept C105795698 @default.
- W2024264945 hasConcept C121332964 @default.
- W2024264945 hasConcept C124101348 @default.
- W2024264945 hasConcept C126674687 @default.
- W2024264945 hasConcept C135572916 @default.
- W2024264945 hasConcept C150670458 @default.
- W2024264945 hasConcept C152877465 @default.
- W2024264945 hasConcept C158622935 @default.
- W2024264945 hasConcept C33923547 @default.
- W2024264945 hasConcept C41008148 @default.
- W2024264945 hasConcept C46889948 @default.
- W2024264945 hasConcept C48921125 @default.
- W2024264945 hasConcept C62520636 @default.
- W2024264945 hasConcept C83546350 @default.
- W2024264945 hasConceptScore W2024264945C101104100 @default.
- W2024264945 hasConceptScore W2024264945C104409967 @default.
- W2024264945 hasConceptScore W2024264945C105795698 @default.
- W2024264945 hasConceptScore W2024264945C121332964 @default.
- W2024264945 hasConceptScore W2024264945C124101348 @default.
- W2024264945 hasConceptScore W2024264945C126674687 @default.
- W2024264945 hasConceptScore W2024264945C135572916 @default.
- W2024264945 hasConceptScore W2024264945C150670458 @default.
- W2024264945 hasConceptScore W2024264945C152877465 @default.
- W2024264945 hasConceptScore W2024264945C158622935 @default.
- W2024264945 hasConceptScore W2024264945C33923547 @default.
- W2024264945 hasConceptScore W2024264945C41008148 @default.
- W2024264945 hasConceptScore W2024264945C46889948 @default.
- W2024264945 hasConceptScore W2024264945C48921125 @default.
- W2024264945 hasConceptScore W2024264945C62520636 @default.
- W2024264945 hasConceptScore W2024264945C83546350 @default.
- W2024264945 hasIssue "9" @default.
- W2024264945 hasLocation W20242649451 @default.
- W2024264945 hasLocation W20242649452 @default.
- W2024264945 hasLocation W20242649453 @default.
- W2024264945 hasLocation W20242649454 @default.
- W2024264945 hasLocation W20242649455 @default.
- W2024264945 hasLocation W20242649456 @default.
- W2024264945 hasOpenAccess W2024264945 @default.
- W2024264945 hasPrimaryLocation W20242649451 @default.
- W2024264945 hasRelatedWork W2016387257 @default.
- W2024264945 hasRelatedWork W2024264945 @default.
- W2024264945 hasRelatedWork W2287795324 @default.
- W2024264945 hasRelatedWork W2375721435 @default.
- W2024264945 hasRelatedWork W2388528498 @default.
- W2024264945 hasRelatedWork W2439899683 @default.
- W2024264945 hasRelatedWork W3122861356 @default.
- W2024264945 hasRelatedWork W4290879003 @default.
- W2024264945 hasRelatedWork W4377230321 @default.
- W2024264945 hasRelatedWork W2738033194 @default.
- W2024264945 hasVolume "7" @default.
- W2024264945 isParatext "false" @default.
- W2024264945 isRetracted "false" @default.
- W2024264945 magId "2024264945" @default.
- W2024264945 workType "article" @default.