Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024269331> ?p ?o ?g. }
- W2024269331 endingPage "1684" @default.
- W2024269331 startingPage "1674" @default.
- W2024269331 abstract "Self-assembly of small molecules into one-dimensional nanostructures offers many potential applications in electronically and biologically active materials. The recent advances discussed in this Account demonstrate how researchers can use the fundamental principles of supramolecular chemistry to craft the size, shape, and internal structure of nanoscale objects. In each system described here, we used atomic force microscopy (AFM) and transmission electron microscopy (TEM) to study the assembly morphology. Circular dichroism, nuclear magnetic resonance, infrared, and optical spectroscopy provided additional information about the self-assembly behavior in solution at the molecular level. Dendron rod−coil molecules self-assemble into flat or helical ribbons. They can incorporate electronically conductive groups and can be mineralized with inorganic semiconductors. To understand the relative importance of each segment in forming the supramolecular structure, we synthetically modified the dendron, rod, and coil portions. The self-assembly depended on the generation number of the dendron, the number of hydrogen-bonding functions, and the length of the rod and coil segments. We formed chiral helices using a dendron−rod−coil molecule prepared from an enantiomerically enriched coil. Because helical nanostructures are important targets for use in biomaterials, nonlinear optics, and stereoselective catalysis, researchers would like to precisely control their shape and size. Tripeptide-containing peptide lipid molecules assemble into straight or twisted nanofibers in organic solvents. As seen by AFM, the sterics of bulky end groups can tune the helical pitch of these peptide lipid nanofibers in organic solvents. Furthermore, we demonstrated the potential for pitch control using trans-to-cis photoisomerization of a terminal azobenzene group. Other molecules called peptide amphiphiles (PAs) are known to assemble in water into cylindrical nanostructures that appear as nanofiber bundles. Surprisingly, TEM of a PA substituted by a nitrobenzyl group revealed assembly into quadruple helical fibers with a braided morphology. Upon photocleavage of this the nitrobenzyl group, the helices transform into single cylindrical nanofibers. Finally, inspired by the tobacco mosaic virus, we used a dumbbell-shaped, oligo(phenylene ethynylene) template to control the length of a PA nanofiber self-assembly (<10 nm). AFM showed complete disappearance of long nanofibers in the presence of this rigid-rod template. Results from quick-freeze/deep-etch TEM and dynamic light scattering demonstrated the templating behavior in aqueous solution. This strategy could provide a general method to control size the length of nonspherical supramolecular nanostructures." @default.
- W2024269331 created "2016-06-24" @default.
- W2024269331 creator A5012371767 @default.
- W2024269331 creator A5079222349 @default.
- W2024269331 date "2008-08-28" @default.
- W2024269331 modified "2023-10-14" @default.
- W2024269331 title "Molecular Self-Assembly into One-Dimensional Nanostructures" @default.
- W2024269331 cites W1980699575 @default.
- W2024269331 cites W1982304014 @default.
- W2024269331 cites W1983534198 @default.
- W2024269331 cites W1986326797 @default.
- W2024269331 cites W1986664194 @default.
- W2024269331 cites W1989800930 @default.
- W2024269331 cites W1996751950 @default.
- W2024269331 cites W1997975224 @default.
- W2024269331 cites W1999878422 @default.
- W2024269331 cites W2006840690 @default.
- W2024269331 cites W2009034769 @default.
- W2024269331 cites W2020099789 @default.
- W2024269331 cites W2030496130 @default.
- W2024269331 cites W2031878846 @default.
- W2024269331 cites W2033083169 @default.
- W2024269331 cites W2034436293 @default.
- W2024269331 cites W2035174940 @default.
- W2024269331 cites W2037211136 @default.
- W2024269331 cites W2038921352 @default.
- W2024269331 cites W2042584758 @default.
- W2024269331 cites W2049628910 @default.
- W2024269331 cites W2056668860 @default.
- W2024269331 cites W2058620284 @default.
- W2024269331 cites W2065618769 @default.
- W2024269331 cites W2066674937 @default.
- W2024269331 cites W2066732978 @default.
- W2024269331 cites W2067803690 @default.
- W2024269331 cites W2068254194 @default.
- W2024269331 cites W2071397762 @default.
- W2024269331 cites W2072067986 @default.
- W2024269331 cites W2073795835 @default.
- W2024269331 cites W2075521550 @default.
- W2024269331 cites W2080815389 @default.
- W2024269331 cites W2087609924 @default.
- W2024269331 cites W2091355622 @default.
- W2024269331 cites W2094224265 @default.
- W2024269331 cites W2095102921 @default.
- W2024269331 cites W2096503214 @default.
- W2024269331 cites W2103962291 @default.
- W2024269331 cites W2108484579 @default.
- W2024269331 cites W2111274561 @default.
- W2024269331 cites W2117031108 @default.
- W2024269331 cites W2119966574 @default.
- W2024269331 cites W2120399594 @default.
- W2024269331 cites W2125867738 @default.
- W2024269331 cites W2126838166 @default.
- W2024269331 cites W2133414177 @default.
- W2024269331 cites W2156881542 @default.
- W2024269331 cites W2171231418 @default.
- W2024269331 cites W2176562570 @default.
- W2024269331 cites W4210963845 @default.
- W2024269331 cites W4237495492 @default.
- W2024269331 cites W4239858085 @default.
- W2024269331 cites W4249580161 @default.
- W2024269331 doi "https://doi.org/10.1021/ar8000926" @default.
- W2024269331 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2645948" @default.
- W2024269331 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18754628" @default.
- W2024269331 hasPublicationYear "2008" @default.
- W2024269331 type Work @default.
- W2024269331 sameAs 2024269331 @default.
- W2024269331 citedByCount "688" @default.
- W2024269331 countsByYear W20242693312012 @default.
- W2024269331 countsByYear W20242693312013 @default.
- W2024269331 countsByYear W20242693312014 @default.
- W2024269331 countsByYear W20242693312015 @default.
- W2024269331 countsByYear W20242693312016 @default.
- W2024269331 countsByYear W20242693312017 @default.
- W2024269331 countsByYear W20242693312018 @default.
- W2024269331 countsByYear W20242693312019 @default.
- W2024269331 countsByYear W20242693312020 @default.
- W2024269331 countsByYear W20242693312021 @default.
- W2024269331 countsByYear W20242693312022 @default.
- W2024269331 countsByYear W20242693312023 @default.
- W2024269331 crossrefType "journal-article" @default.
- W2024269331 hasAuthorship W2024269331A5012371767 @default.
- W2024269331 hasAuthorship W2024269331A5079222349 @default.
- W2024269331 hasBestOaLocation W20242693312 @default.
- W2024269331 hasConcept C133571119 @default.
- W2024269331 hasConcept C171250308 @default.
- W2024269331 hasConcept C178790620 @default.
- W2024269331 hasConcept C185592680 @default.
- W2024269331 hasConcept C186187911 @default.
- W2024269331 hasConcept C188027245 @default.
- W2024269331 hasConcept C192562407 @default.
- W2024269331 hasConcept C26856880 @default.
- W2024269331 hasConcept C32909587 @default.
- W2024269331 hasConcept C55637122 @default.
- W2024269331 hasConcept C8010536 @default.
- W2024269331 hasConcept C91129048 @default.
- W2024269331 hasConcept C93275456 @default.
- W2024269331 hasConceptScore W2024269331C133571119 @default.