Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024288510> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2024288510 endingPage "814" @default.
- W2024288510 startingPage "801" @default.
- W2024288510 abstract "Anomaly detection is an important task for hyperspectral data exploitation. A standard approach for anomaly detection in the literature is the method developed by Reed and Xiaoli, also called RX algorithm. A variation of this algorithm consists of applying the same concept to a local sliding window centered around each image pixel. The computational cost is very high for RX algorithm and it strongly increases for its local versions. However, current advances in high performance computing help to reduce the run-time of these algorithms. So, for the standard RX, it is possible to achieve a processing time similar to the data acquisition time and to increase the practical interest for its local versions. In this paper, we discuss several optimizations which exploit different forms of acceleration for these algorithms. First, we explain how the calculation of the correlation matrix and its inverse can be accelerated through optimization techniques based on the properties of these particular matrices and the efficient use of linear algebra libraries. Second, we describe parallel implementations of the RX algorithm, optimized for multicore platforms. These are well-known, inexpensive and widely available high performance computing platforms. The ability to detect anomalies of the global and local versions of RX is explored using a wide set of experiments, using both synthetic and real data, which are used for comparing the optimized versions of the global and local RX algorithms in terms of anomaly detection accuracy and computational efficiency. The synthetic images have been generated under different noise conditions and anomalous features. The two real scenes used in the experiments are a hyperspectral data set collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) system over the World Trade Center (WTC) in New York, five days after the terrorist attacks, and another data set collected by the HYperspectral Digital Image Collection Experiment (HYDICE). Experimental results indicate that the proposed optimizations can significantly improve the performance of the considered algorithms without reducing their anomaly detection accuracy." @default.
- W2024288510 created "2016-06-24" @default.
- W2024288510 creator A5007447524 @default.
- W2024288510 creator A5015984335 @default.
- W2024288510 creator A5054292278 @default.
- W2024288510 creator A5065759704 @default.
- W2024288510 date "2013-04-01" @default.
- W2024288510 modified "2023-10-18" @default.
- W2024288510 title "Analysis and Optimizations of Global and Local Versions of the RX Algorithm for Anomaly Detection in Hyperspectral Data" @default.
- W2024288510 cites W1601538959 @default.
- W2024288510 cites W1967474856 @default.
- W2024288510 cites W1970099214 @default.
- W2024288510 cites W2000361322 @default.
- W2024288510 cites W2010797000 @default.
- W2024288510 cites W2019287283 @default.
- W2024288510 cites W2022470997 @default.
- W2024288510 cites W2028356486 @default.
- W2024288510 cites W2033638991 @default.
- W2024288510 cites W2047870694 @default.
- W2024288510 cites W2062303684 @default.
- W2024288510 cites W2078296814 @default.
- W2024288510 cites W2086506050 @default.
- W2024288510 cites W2114445866 @default.
- W2024288510 cites W2117741752 @default.
- W2024288510 cites W2121657565 @default.
- W2024288510 cites W2124267685 @default.
- W2024288510 cites W2131697388 @default.
- W2024288510 cites W2136078175 @default.
- W2024288510 cites W2137945622 @default.
- W2024288510 cites W2140340527 @default.
- W2024288510 cites W2140876153 @default.
- W2024288510 cites W2142552707 @default.
- W2024288510 cites W2167583754 @default.
- W2024288510 cites W2545554564 @default.
- W2024288510 cites W4229666556 @default.
- W2024288510 cites W4248253651 @default.
- W2024288510 doi "https://doi.org/10.1109/jstars.2013.2238609" @default.
- W2024288510 hasPublicationYear "2013" @default.
- W2024288510 type Work @default.
- W2024288510 sameAs 2024288510 @default.
- W2024288510 citedByCount "173" @default.
- W2024288510 countsByYear W20242885102014 @default.
- W2024288510 countsByYear W20242885102015 @default.
- W2024288510 countsByYear W20242885102016 @default.
- W2024288510 countsByYear W20242885102017 @default.
- W2024288510 countsByYear W20242885102018 @default.
- W2024288510 countsByYear W20242885102019 @default.
- W2024288510 countsByYear W20242885102020 @default.
- W2024288510 countsByYear W20242885102021 @default.
- W2024288510 countsByYear W20242885102022 @default.
- W2024288510 countsByYear W20242885102023 @default.
- W2024288510 crossrefType "journal-article" @default.
- W2024288510 hasAuthorship W2024288510A5007447524 @default.
- W2024288510 hasAuthorship W2024288510A5015984335 @default.
- W2024288510 hasAuthorship W2024288510A5054292278 @default.
- W2024288510 hasAuthorship W2024288510A5065759704 @default.
- W2024288510 hasConcept C11413529 @default.
- W2024288510 hasConcept C124101348 @default.
- W2024288510 hasConcept C154945302 @default.
- W2024288510 hasConcept C159078339 @default.
- W2024288510 hasConcept C160633673 @default.
- W2024288510 hasConcept C41008148 @default.
- W2024288510 hasConcept C739882 @default.
- W2024288510 hasConceptScore W2024288510C11413529 @default.
- W2024288510 hasConceptScore W2024288510C124101348 @default.
- W2024288510 hasConceptScore W2024288510C154945302 @default.
- W2024288510 hasConceptScore W2024288510C159078339 @default.
- W2024288510 hasConceptScore W2024288510C160633673 @default.
- W2024288510 hasConceptScore W2024288510C41008148 @default.
- W2024288510 hasConceptScore W2024288510C739882 @default.
- W2024288510 hasIssue "2" @default.
- W2024288510 hasLocation W20242885101 @default.
- W2024288510 hasOpenAccess W2024288510 @default.
- W2024288510 hasPrimaryLocation W20242885101 @default.
- W2024288510 hasRelatedWork W1985153411 @default.
- W2024288510 hasRelatedWork W2090082185 @default.
- W2024288510 hasRelatedWork W2117338621 @default.
- W2024288510 hasRelatedWork W2417715171 @default.
- W2024288510 hasRelatedWork W2899327139 @default.
- W2024288510 hasRelatedWork W2987273924 @default.
- W2024288510 hasRelatedWork W3101471640 @default.
- W2024288510 hasRelatedWork W3184368071 @default.
- W2024288510 hasRelatedWork W3200850268 @default.
- W2024288510 hasRelatedWork W4200272877 @default.
- W2024288510 hasVolume "6" @default.
- W2024288510 isParatext "false" @default.
- W2024288510 isRetracted "false" @default.
- W2024288510 magId "2024288510" @default.
- W2024288510 workType "article" @default.