Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024294930> ?p ?o ?g. }
- W2024294930 abstract "In this paper, the sparse coding and local features of images are combined to propose a new image classification algorithm. Firstly, online dictionary learning algorithm is employed to train the visual vocabulary based on SIFT features. Secondly, SIFT features are extracted from images and these features are encoded into sparse vector through visual vocabulary. Thirdly, the images are evenly divided into I*I areas and the sparse vectors in each area are pooled, getting a fixed dimension feature vector which represents the whole image. Lastly, to achieve the purpose of image classification, we use support vector machine classifier for learning and recognition. Results from the Caltech-101 and Scene-15 data sets show that, compared with the existing algorithm, the proposed algorithm has a better performance, which can effectively represent the feature of images and improve the accuracy of image classification greatly." @default.
- W2024294930 created "2016-06-24" @default.
- W2024294930 creator A5050398639 @default.
- W2024294930 creator A5052787170 @default.
- W2024294930 date "2014-01-01" @default.
- W2024294930 modified "2023-09-23" @default.
- W2024294930 title "Image Classification Algorithm Based on Sparse Coding" @default.
- W2024294930 cites W1518769133 @default.
- W2024294930 cites W1523791880 @default.
- W2024294930 cites W1562004855 @default.
- W2024294930 cites W1975903729 @default.
- W2024294930 cites W1986482242 @default.
- W2024294930 cites W1990867522 @default.
- W2024294930 cites W1999627569 @default.
- W2024294930 cites W2046083725 @default.
- W2024294930 cites W2063978378 @default.
- W2024294930 cites W2071957154 @default.
- W2024294930 cites W2097018403 @default.
- W2024294930 cites W2105464873 @default.
- W2024294930 cites W2111993661 @default.
- W2024294930 cites W2112447569 @default.
- W2024294930 cites W2114170496 @default.
- W2024294930 cites W2119821739 @default.
- W2024294930 cites W2130660124 @default.
- W2024294930 cites W2135074259 @default.
- W2024294930 cites W2145072179 @default.
- W2024294930 cites W2145328895 @default.
- W2024294930 cites W2147277317 @default.
- W2024294930 cites W2150529939 @default.
- W2024294930 cites W2151103935 @default.
- W2024294930 cites W2155490028 @default.
- W2024294930 cites W2162915993 @default.
- W2024294930 cites W2177274842 @default.
- W2024294930 cites W2357316328 @default.
- W2024294930 cites W2949848653 @default.
- W2024294930 cites W2242994677 @default.
- W2024294930 doi "https://doi.org/10.4304/jmm.9.1.114-122" @default.
- W2024294930 hasPublicationYear "2014" @default.
- W2024294930 type Work @default.
- W2024294930 sameAs 2024294930 @default.
- W2024294930 citedByCount "1" @default.
- W2024294930 countsByYear W20242949302016 @default.
- W2024294930 crossrefType "journal-article" @default.
- W2024294930 hasAuthorship W2024294930A5050398639 @default.
- W2024294930 hasAuthorship W2024294930A5052787170 @default.
- W2024294930 hasConcept C105795698 @default.
- W2024294930 hasConcept C115961682 @default.
- W2024294930 hasConcept C12267149 @default.
- W2024294930 hasConcept C138885662 @default.
- W2024294930 hasConcept C153180895 @default.
- W2024294930 hasConcept C154945302 @default.
- W2024294930 hasConcept C1667742 @default.
- W2024294930 hasConcept C167611913 @default.
- W2024294930 hasConcept C179518139 @default.
- W2024294930 hasConcept C189391414 @default.
- W2024294930 hasConcept C2777601683 @default.
- W2024294930 hasConcept C33923547 @default.
- W2024294930 hasConcept C41008148 @default.
- W2024294930 hasConcept C41895202 @default.
- W2024294930 hasConcept C61265191 @default.
- W2024294930 hasConcept C75294576 @default.
- W2024294930 hasConcept C77637269 @default.
- W2024294930 hasConcept C83665646 @default.
- W2024294930 hasConcept C95623464 @default.
- W2024294930 hasConceptScore W2024294930C105795698 @default.
- W2024294930 hasConceptScore W2024294930C115961682 @default.
- W2024294930 hasConceptScore W2024294930C12267149 @default.
- W2024294930 hasConceptScore W2024294930C138885662 @default.
- W2024294930 hasConceptScore W2024294930C153180895 @default.
- W2024294930 hasConceptScore W2024294930C154945302 @default.
- W2024294930 hasConceptScore W2024294930C1667742 @default.
- W2024294930 hasConceptScore W2024294930C167611913 @default.
- W2024294930 hasConceptScore W2024294930C179518139 @default.
- W2024294930 hasConceptScore W2024294930C189391414 @default.
- W2024294930 hasConceptScore W2024294930C2777601683 @default.
- W2024294930 hasConceptScore W2024294930C33923547 @default.
- W2024294930 hasConceptScore W2024294930C41008148 @default.
- W2024294930 hasConceptScore W2024294930C41895202 @default.
- W2024294930 hasConceptScore W2024294930C61265191 @default.
- W2024294930 hasConceptScore W2024294930C75294576 @default.
- W2024294930 hasConceptScore W2024294930C77637269 @default.
- W2024294930 hasConceptScore W2024294930C83665646 @default.
- W2024294930 hasConceptScore W2024294930C95623464 @default.
- W2024294930 hasLocation W20242949301 @default.
- W2024294930 hasOpenAccess W2024294930 @default.
- W2024294930 hasPrimaryLocation W20242949301 @default.
- W2024294930 hasRelatedWork W2038590919 @default.
- W2024294930 hasRelatedWork W2061449484 @default.
- W2024294930 hasRelatedWork W2067178723 @default.
- W2024294930 hasRelatedWork W2097018403 @default.
- W2024294930 hasRelatedWork W2110370907 @default.
- W2024294930 hasRelatedWork W2113634564 @default.
- W2024294930 hasRelatedWork W2133001599 @default.
- W2024294930 hasRelatedWork W2153180128 @default.
- W2024294930 hasRelatedWork W2548890331 @default.
- W2024294930 hasRelatedWork W2745464931 @default.
- W2024294930 hasRelatedWork W2893536706 @default.
- W2024294930 hasRelatedWork W3006001563 @default.
- W2024294930 hasRelatedWork W3076930281 @default.
- W2024294930 hasRelatedWork W3086672269 @default.