Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024306908> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2024306908 abstract "Abstract Financial exploitation of forests comprises an important part of man activity. There are efforts being made to conserve the sustainable exploitation while simultaneously avoiding degradation of the environment. One tool used in these efforts is the modeling of tree features, such as total tree height, sawn-timber tree height, merchantable tree height, and total or sawn-timber tree volume, which yields an estimate of the forest in finance recoverable goods. Sustainable forest management design must be supported by the adjustment of computational techniques. The purpose of this paper is to assess a reliable modeling approach for estimating individual tree heights for the maturity of trees for logging through determining the applicability of different types of neural network models and identifying a neural network procedure for accurate estimation of these variables. These models serve as an alternative to the traditional regression approach. All types of model estimations are evaluated and compared in this paper. Back Propagation Artificial Neural Network (BPANN), Cascade Correlation Artificial Neural Network (CCANN), and Generalized Regression Neural Network (GRNN) models are developed to estimate individual tree heights for the logging of mature trees, such as sawn-timber height and merchantable height. The results reported in this research suggest that the selected BPANN and CCANN models are reliable and demonstrate their adequacy and potential for estimating sawn-timber and merchantable tree height. The results also illustrate that the CCANN models are superior to the BPANN and GRNN models and lead to higher estimation accuracy. Moreover, the NN models were found to be superior to the tested nonlinear regression models." @default.
- W2024306908 created "2016-06-24" @default.
- W2024306908 creator A5004129800 @default.
- W2024306908 date "2012-12-01" @default.
- W2024306908 modified "2023-09-27" @default.
- W2024306908 title "Assessing a reliable modeling approach of features of trees through neural network models for sustainable forests" @default.
- W2024306908 cites W1500564636 @default.
- W2024306908 cites W1531218787 @default.
- W2024306908 cites W1554663460 @default.
- W2024306908 cites W1608292140 @default.
- W2024306908 cites W1974782502 @default.
- W2024306908 cites W1997632044 @default.
- W2024306908 cites W1998442441 @default.
- W2024306908 cites W2002016471 @default.
- W2024306908 cites W2015627422 @default.
- W2024306908 cites W2016960263 @default.
- W2024306908 cites W2071881814 @default.
- W2024306908 cites W2087794098 @default.
- W2024306908 cites W2090675543 @default.
- W2024306908 cites W2099695702 @default.
- W2024306908 cites W2105934661 @default.
- W2024306908 cites W2109779438 @default.
- W2024306908 cites W2118020555 @default.
- W2024306908 cites W2124776405 @default.
- W2024306908 cites W2149723649 @default.
- W2024306908 cites W2292765240 @default.
- W2024306908 cites W2474791671 @default.
- W2024306908 cites W2613955632 @default.
- W2024306908 cites W2766736793 @default.
- W2024306908 cites W2064142190 @default.
- W2024306908 doi "https://doi.org/10.1016/j.suscom.2012.10.002" @default.
- W2024306908 hasPublicationYear "2012" @default.
- W2024306908 type Work @default.
- W2024306908 sameAs 2024306908 @default.
- W2024306908 citedByCount "3" @default.
- W2024306908 countsByYear W20243069082016 @default.
- W2024306908 countsByYear W20243069082018 @default.
- W2024306908 countsByYear W20243069082019 @default.
- W2024306908 crossrefType "journal-article" @default.
- W2024306908 hasAuthorship W2024306908A5004129800 @default.
- W2024306908 hasConcept C105795698 @default.
- W2024306908 hasConcept C113174947 @default.
- W2024306908 hasConcept C119857082 @default.
- W2024306908 hasConcept C124101348 @default.
- W2024306908 hasConcept C125620115 @default.
- W2024306908 hasConcept C127413603 @default.
- W2024306908 hasConcept C134306372 @default.
- W2024306908 hasConcept C201995342 @default.
- W2024306908 hasConcept C205649164 @default.
- W2024306908 hasConcept C33923547 @default.
- W2024306908 hasConcept C41008148 @default.
- W2024306908 hasConcept C45804977 @default.
- W2024306908 hasConcept C50644808 @default.
- W2024306908 hasConcept C83546350 @default.
- W2024306908 hasConcept C96250715 @default.
- W2024306908 hasConcept C97137747 @default.
- W2024306908 hasConceptScore W2024306908C105795698 @default.
- W2024306908 hasConceptScore W2024306908C113174947 @default.
- W2024306908 hasConceptScore W2024306908C119857082 @default.
- W2024306908 hasConceptScore W2024306908C124101348 @default.
- W2024306908 hasConceptScore W2024306908C125620115 @default.
- W2024306908 hasConceptScore W2024306908C127413603 @default.
- W2024306908 hasConceptScore W2024306908C134306372 @default.
- W2024306908 hasConceptScore W2024306908C201995342 @default.
- W2024306908 hasConceptScore W2024306908C205649164 @default.
- W2024306908 hasConceptScore W2024306908C33923547 @default.
- W2024306908 hasConceptScore W2024306908C41008148 @default.
- W2024306908 hasConceptScore W2024306908C45804977 @default.
- W2024306908 hasConceptScore W2024306908C50644808 @default.
- W2024306908 hasConceptScore W2024306908C83546350 @default.
- W2024306908 hasConceptScore W2024306908C96250715 @default.
- W2024306908 hasConceptScore W2024306908C97137747 @default.
- W2024306908 hasLocation W20243069081 @default.
- W2024306908 hasOpenAccess W2024306908 @default.
- W2024306908 hasPrimaryLocation W20243069081 @default.
- W2024306908 hasRelatedWork W1709722147 @default.
- W2024306908 hasRelatedWork W1978011392 @default.
- W2024306908 hasRelatedWork W1993209697 @default.
- W2024306908 hasRelatedWork W2000164913 @default.
- W2024306908 hasRelatedWork W2019197453 @default.
- W2024306908 hasRelatedWork W2020236162 @default.
- W2024306908 hasRelatedWork W2020691931 @default.
- W2024306908 hasRelatedWork W2043449394 @default.
- W2024306908 hasRelatedWork W2101380213 @default.
- W2024306908 hasRelatedWork W2106100548 @default.
- W2024306908 hasRelatedWork W2110230565 @default.
- W2024306908 hasRelatedWork W2120683406 @default.
- W2024306908 hasRelatedWork W2178751732 @default.
- W2024306908 hasRelatedWork W2325404988 @default.
- W2024306908 hasRelatedWork W2378896900 @default.
- W2024306908 hasRelatedWork W2392584042 @default.
- W2024306908 hasRelatedWork W2497210317 @default.
- W2024306908 hasRelatedWork W2508380041 @default.
- W2024306908 hasRelatedWork W3199051246 @default.
- W2024306908 hasRelatedWork W651736762 @default.
- W2024306908 isParatext "false" @default.
- W2024306908 isRetracted "false" @default.
- W2024306908 magId "2024306908" @default.
- W2024306908 workType "article" @default.