Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024307561> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2024307561 endingPage "181" @default.
- W2024307561 startingPage "173" @default.
- W2024307561 abstract "As a research focus of intelligence algorithm, the prediction of classic noiseless chaotic time series has a great development in recent years. However, the existing prediction models cannot get good performance for real-world chaotic time series because of the interference of noise components. In order to take full advantage of the property of real-world chaotic time series, the paper proposes a novel prediction model based on wavelet transform and echo state network (WESN). The basic idea of WESN is that firstly wavelet decomposition is used to separate the chaotic dynamics component and noise components, then the gotten components can be predicted by echo state network (ESN) independently, and finally the prediction results of time series are obtained by assembling the prediction values of all components. By using real-world sunspot time series for verification, the prediction results show that the proposed model has higher prediction accuracy by comparing with the models of direct echo state network (DESN), and direct echo state network (DSVM)." @default.
- W2024307561 created "2016-06-24" @default.
- W2024307561 creator A5039346961 @default.
- W2024307561 creator A5044874015 @default.
- W2024307561 creator A5053231956 @default.
- W2024307561 creator A5065467957 @default.
- W2024307561 creator A5070800044 @default.
- W2024307561 creator A5076983154 @default.
- W2024307561 date "2012-05-31" @default.
- W2024307561 modified "2023-10-16" @default.
- W2024307561 title "Noisy Chaotic Time Series Prediction Based on Wavelet Echo State Network" @default.
- W2024307561 cites W1984284433 @default.
- W2024307561 cites W1985297169 @default.
- W2024307561 cites W1987568357 @default.
- W2024307561 cites W2001263627 @default.
- W2024307561 cites W2029401646 @default.
- W2024307561 cites W2047799627 @default.
- W2024307561 cites W2110242776 @default.
- W2024307561 cites W2118706537 @default.
- W2024307561 cites W2118756059 @default.
- W2024307561 cites W2132984323 @default.
- W2024307561 cites W2139287577 @default.
- W2024307561 cites W2312329433 @default.
- W2024307561 cites W2327448315 @default.
- W2024307561 cites W2354634040 @default.
- W2024307561 doi "https://doi.org/10.4156/jdcta.vol6.issue9.22" @default.
- W2024307561 hasPublicationYear "2012" @default.
- W2024307561 type Work @default.
- W2024307561 sameAs 2024307561 @default.
- W2024307561 citedByCount "0" @default.
- W2024307561 crossrefType "journal-article" @default.
- W2024307561 hasAuthorship W2024307561A5039346961 @default.
- W2024307561 hasAuthorship W2024307561A5044874015 @default.
- W2024307561 hasAuthorship W2024307561A5053231956 @default.
- W2024307561 hasAuthorship W2024307561A5065467957 @default.
- W2024307561 hasAuthorship W2024307561A5070800044 @default.
- W2024307561 hasAuthorship W2024307561A5076983154 @default.
- W2024307561 hasConcept C11413529 @default.
- W2024307561 hasConcept C119857082 @default.
- W2024307561 hasConcept C143724316 @default.
- W2024307561 hasConcept C147168706 @default.
- W2024307561 hasConcept C151406439 @default.
- W2024307561 hasConcept C151730666 @default.
- W2024307561 hasConcept C153180895 @default.
- W2024307561 hasConcept C154945302 @default.
- W2024307561 hasConcept C172025690 @default.
- W2024307561 hasConcept C2777052490 @default.
- W2024307561 hasConcept C2779426996 @default.
- W2024307561 hasConcept C38652104 @default.
- W2024307561 hasConcept C41008148 @default.
- W2024307561 hasConcept C47432892 @default.
- W2024307561 hasConcept C48103436 @default.
- W2024307561 hasConcept C50644808 @default.
- W2024307561 hasConcept C86803240 @default.
- W2024307561 hasConceptScore W2024307561C11413529 @default.
- W2024307561 hasConceptScore W2024307561C119857082 @default.
- W2024307561 hasConceptScore W2024307561C143724316 @default.
- W2024307561 hasConceptScore W2024307561C147168706 @default.
- W2024307561 hasConceptScore W2024307561C151406439 @default.
- W2024307561 hasConceptScore W2024307561C151730666 @default.
- W2024307561 hasConceptScore W2024307561C153180895 @default.
- W2024307561 hasConceptScore W2024307561C154945302 @default.
- W2024307561 hasConceptScore W2024307561C172025690 @default.
- W2024307561 hasConceptScore W2024307561C2777052490 @default.
- W2024307561 hasConceptScore W2024307561C2779426996 @default.
- W2024307561 hasConceptScore W2024307561C38652104 @default.
- W2024307561 hasConceptScore W2024307561C41008148 @default.
- W2024307561 hasConceptScore W2024307561C47432892 @default.
- W2024307561 hasConceptScore W2024307561C48103436 @default.
- W2024307561 hasConceptScore W2024307561C50644808 @default.
- W2024307561 hasConceptScore W2024307561C86803240 @default.
- W2024307561 hasIssue "9" @default.
- W2024307561 hasLocation W20243075611 @default.
- W2024307561 hasOpenAccess W2024307561 @default.
- W2024307561 hasPrimaryLocation W20243075611 @default.
- W2024307561 hasRelatedWork W2071318599 @default.
- W2024307561 hasRelatedWork W2179238887 @default.
- W2024307561 hasRelatedWork W2541950815 @default.
- W2024307561 hasRelatedWork W2735452517 @default.
- W2024307561 hasRelatedWork W3011597238 @default.
- W2024307561 hasRelatedWork W3119499520 @default.
- W2024307561 hasRelatedWork W3176603354 @default.
- W2024307561 hasRelatedWork W4287547957 @default.
- W2024307561 hasRelatedWork W626347572 @default.
- W2024307561 hasRelatedWork W2475781629 @default.
- W2024307561 hasVolume "6" @default.
- W2024307561 isParatext "false" @default.
- W2024307561 isRetracted "false" @default.
- W2024307561 magId "2024307561" @default.
- W2024307561 workType "article" @default.