Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024330249> ?p ?o ?g. }
- W2024330249 endingPage "409" @default.
- W2024330249 startingPage "385" @default.
- W2024330249 abstract "Structural equation modeling is a multivariate statistical method that allows evaluation of a network of relationships between manifest and latent variables. In this statistical technique, preconceptualizations that reflect research questions or existing knowledge of system structure create the initial framework for model development, while both direct and indirect effects and measurement errors are considered. Given the interesting features of this method, it is quite surprising that the number of applications in ecology is limited, and even less common in aquatic ecosystems. This study presents two examples where structural equation modeling is used for exploring ecological structures; i.e., summer epilimnetic phytoplankton dynamics. Both eutrophic (Lake Mendota) and mesotrophic (Lake Washington) conditions were used to test an initial hypothesized model that considered the regulatory role of abiotic factors and biological interactions on lake phytoplankton dynamics and water clarity during the summer stratification period. Generally, the model gave plausible results, while a higher proportion of the observed variability was accounted for in the eutrophic environment. Most importantly, we show that structural equation modeling provided a convenient means for assessing the relative role of several ecological processes (e.g., vertical mixing, intrusions of the hypolimnetic nutrient stock, herbivory) known to determine the levels of water quality variables of management interest (e.g., water clarity, cyanobacteria). A Bayesian hierarchical methodology is also introduced to relax the classical identifiability restrictions and treat them as stochastic. Additional advantages of the Bayesian approach are the flexible incorporation of prior knowledge on parameters, the ability to get information on multimodality in marginal densities (undetectable by standard procedures), and the fact that the structural equation modeling process does not rely on asymptotic theory which is particularly important when the sample size is small (commonly experienced in environmental studies). Special emphasis is given on how this Bayesian methodological framework can be used for assessing eutrophic conditions and assisting water quality management. Structural equation modeling has several attractive features that can be particularly useful to researchers when exploring ecological patterns or disentangling complex environmental management issues." @default.
- W2024330249 created "2016-06-24" @default.
- W2024330249 creator A5016449154 @default.
- W2024330249 creator A5025373764 @default.
- W2024330249 creator A5036367436 @default.
- W2024330249 creator A5041053606 @default.
- W2024330249 creator A5041531695 @default.
- W2024330249 creator A5042911844 @default.
- W2024330249 creator A5072715447 @default.
- W2024330249 date "2006-02-01" @default.
- W2024330249 modified "2023-10-10" @default.
- W2024330249 title "Exploring ecological patterns with structural equation modeling and Bayesian analysis" @default.
- W2024330249 cites W1574417742 @default.
- W2024330249 cites W1784626615 @default.
- W2024330249 cites W1899766488 @default.
- W2024330249 cites W1972074221 @default.
- W2024330249 cites W1975863962 @default.
- W2024330249 cites W1982077938 @default.
- W2024330249 cites W1982636789 @default.
- W2024330249 cites W1983203323 @default.
- W2024330249 cites W1983701496 @default.
- W2024330249 cites W1987297716 @default.
- W2024330249 cites W1996074976 @default.
- W2024330249 cites W1998580839 @default.
- W2024330249 cites W1999470529 @default.
- W2024330249 cites W2006844559 @default.
- W2024330249 cites W2018201949 @default.
- W2024330249 cites W2021051796 @default.
- W2024330249 cites W2023172395 @default.
- W2024330249 cites W2028247172 @default.
- W2024330249 cites W2030630447 @default.
- W2024330249 cites W2033168829 @default.
- W2024330249 cites W2033854988 @default.
- W2024330249 cites W2038653611 @default.
- W2024330249 cites W2040453185 @default.
- W2024330249 cites W2040586388 @default.
- W2024330249 cites W2042539525 @default.
- W2024330249 cites W2045860903 @default.
- W2024330249 cites W2046299240 @default.
- W2024330249 cites W2049964725 @default.
- W2024330249 cites W2063157241 @default.
- W2024330249 cites W2064108869 @default.
- W2024330249 cites W2066346054 @default.
- W2024330249 cites W2066348961 @default.
- W2024330249 cites W2069132922 @default.
- W2024330249 cites W2072318346 @default.
- W2024330249 cites W2078689532 @default.
- W2024330249 cites W2080101135 @default.
- W2024330249 cites W2081231156 @default.
- W2024330249 cites W2084767833 @default.
- W2024330249 cites W2085363873 @default.
- W2024330249 cites W2092989417 @default.
- W2024330249 cites W2093978370 @default.
- W2024330249 cites W2093981487 @default.
- W2024330249 cites W2110249753 @default.
- W2024330249 cites W2114272684 @default.
- W2024330249 cites W2118769530 @default.
- W2024330249 cites W2120002606 @default.
- W2024330249 cites W2123637178 @default.
- W2024330249 cites W2125243736 @default.
- W2024330249 cites W2130783497 @default.
- W2024330249 cites W2131411239 @default.
- W2024330249 cites W2134846557 @default.
- W2024330249 cites W2136942335 @default.
- W2024330249 cites W2137039928 @default.
- W2024330249 cites W2140543110 @default.
- W2024330249 cites W2153001105 @default.
- W2024330249 cites W2158232230 @default.
- W2024330249 cites W2160500856 @default.
- W2024330249 cites W2169375600 @default.
- W2024330249 cites W2177332180 @default.
- W2024330249 cites W2185697453 @default.
- W2024330249 cites W2313808254 @default.
- W2024330249 cites W2322480672 @default.
- W2024330249 cites W2573491640 @default.
- W2024330249 cites W4232797468 @default.
- W2024330249 cites W4247129750 @default.
- W2024330249 cites W4249731213 @default.
- W2024330249 doi "https://doi.org/10.1016/j.ecolmodel.2005.07.028" @default.
- W2024330249 hasPublicationYear "2006" @default.
- W2024330249 type Work @default.
- W2024330249 sameAs 2024330249 @default.
- W2024330249 citedByCount "141" @default.
- W2024330249 countsByYear W20243302492012 @default.
- W2024330249 countsByYear W20243302492013 @default.
- W2024330249 countsByYear W20243302492014 @default.
- W2024330249 countsByYear W20243302492015 @default.
- W2024330249 countsByYear W20243302492016 @default.
- W2024330249 countsByYear W20243302492017 @default.
- W2024330249 countsByYear W20243302492018 @default.
- W2024330249 countsByYear W20243302492019 @default.
- W2024330249 countsByYear W20243302492020 @default.
- W2024330249 countsByYear W20243302492021 @default.
- W2024330249 countsByYear W20243302492022 @default.
- W2024330249 countsByYear W20243302492023 @default.
- W2024330249 crossrefType "journal-article" @default.
- W2024330249 hasAuthorship W2024330249A5016449154 @default.
- W2024330249 hasAuthorship W2024330249A5025373764 @default.