Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024331834> ?p ?o ?g. }
- W2024331834 endingPage "566" @default.
- W2024331834 startingPage "547" @default.
- W2024331834 abstract "Many areas of psychological, social, and health research are characterised by hierarchically structured data. Growth curves are usually represented by means of a two-level hierarchical structure in which observations are the first-level units nested within subjects, the second-level units. With data such as these, the best option for analysis is the general linear mixed model, which can be used even with longitudinal data series in which intervals are not constant or for which over the passage of time there is loss of data. In this paper an overview is given of the general linear mixed model approach to the analysis of longitudinal data in developmental research. The advantages of this model in comparison with the traditional approaches for analysing longitudinal data are shown, emphasising the usefulness of modelling the covariance structure properly to achieve a precise estimation of the parameters of the model." @default.
- W2024331834 created "2016-06-24" @default.
- W2024331834 creator A5009352196 @default.
- W2024331834 creator A5059758953 @default.
- W2024331834 creator A5061952881 @default.
- W2024331834 creator A5063623447 @default.
- W2024331834 date "2010-04-01" @default.
- W2024331834 modified "2023-09-26" @default.
- W2024331834 title "General Linear Mixed Model for Analysing Longitudinal Data in Developmental Research" @default.
- W2024331834 cites W10064695 @default.
- W2024331834 cites W1486584208 @default.
- W2024331834 cites W1587682423 @default.
- W2024331834 cites W1936528559 @default.
- W2024331834 cites W1968371014 @default.
- W2024331834 cites W1972102668 @default.
- W2024331834 cites W1981903823 @default.
- W2024331834 cites W1982585616 @default.
- W2024331834 cites W1992979615 @default.
- W2024331834 cites W1994552776 @default.
- W2024331834 cites W1994901996 @default.
- W2024331834 cites W1997481619 @default.
- W2024331834 cites W2012610170 @default.
- W2024331834 cites W2014320894 @default.
- W2024331834 cites W2026689662 @default.
- W2024331834 cites W2031135332 @default.
- W2024331834 cites W2044520105 @default.
- W2024331834 cites W2059348506 @default.
- W2024331834 cites W2059430458 @default.
- W2024331834 cites W2061887648 @default.
- W2024331834 cites W2065965622 @default.
- W2024331834 cites W2075384682 @default.
- W2024331834 cites W2078170899 @default.
- W2024331834 cites W2082246284 @default.
- W2024331834 cites W2087028773 @default.
- W2024331834 cites W2116879114 @default.
- W2024331834 cites W2122232399 @default.
- W2024331834 cites W2142635246 @default.
- W2024331834 cites W2168175751 @default.
- W2024331834 cites W2312643126 @default.
- W2024331834 cites W3022949289 @default.
- W2024331834 cites W4206653471 @default.
- W2024331834 cites W4230902751 @default.
- W2024331834 cites W4231259605 @default.
- W2024331834 cites W5489822 @default.
- W2024331834 doi "https://doi.org/10.2466/pms.110.2.547-566" @default.
- W2024331834 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20499565" @default.
- W2024331834 hasPublicationYear "2010" @default.
- W2024331834 type Work @default.
- W2024331834 sameAs 2024331834 @default.
- W2024331834 citedByCount "18" @default.
- W2024331834 countsByYear W20243318342012 @default.
- W2024331834 countsByYear W20243318342014 @default.
- W2024331834 countsByYear W20243318342015 @default.
- W2024331834 countsByYear W20243318342017 @default.
- W2024331834 countsByYear W20243318342018 @default.
- W2024331834 countsByYear W20243318342019 @default.
- W2024331834 countsByYear W20243318342020 @default.
- W2024331834 countsByYear W20243318342021 @default.
- W2024331834 countsByYear W20243318342023 @default.
- W2024331834 crossrefType "journal-article" @default.
- W2024331834 hasAuthorship W2024331834A5009352196 @default.
- W2024331834 hasAuthorship W2024331834A5059758953 @default.
- W2024331834 hasAuthorship W2024331834A5061952881 @default.
- W2024331834 hasAuthorship W2024331834A5063623447 @default.
- W2024331834 hasConcept C105795698 @default.
- W2024331834 hasConcept C119857082 @default.
- W2024331834 hasConcept C124101348 @default.
- W2024331834 hasConcept C126322002 @default.
- W2024331834 hasConcept C144986985 @default.
- W2024331834 hasConcept C149782125 @default.
- W2024331834 hasConcept C153720581 @default.
- W2024331834 hasConcept C16012445 @default.
- W2024331834 hasConcept C163175372 @default.
- W2024331834 hasConcept C168743327 @default.
- W2024331834 hasConcept C178650346 @default.
- W2024331834 hasConcept C2777895361 @default.
- W2024331834 hasConcept C3020672099 @default.
- W2024331834 hasConcept C33923547 @default.
- W2024331834 hasConcept C41008148 @default.
- W2024331834 hasConcept C53059260 @default.
- W2024331834 hasConcept C70519679 @default.
- W2024331834 hasConcept C71924100 @default.
- W2024331834 hasConcept C95190672 @default.
- W2024331834 hasConceptScore W2024331834C105795698 @default.
- W2024331834 hasConceptScore W2024331834C119857082 @default.
- W2024331834 hasConceptScore W2024331834C124101348 @default.
- W2024331834 hasConceptScore W2024331834C126322002 @default.
- W2024331834 hasConceptScore W2024331834C144986985 @default.
- W2024331834 hasConceptScore W2024331834C149782125 @default.
- W2024331834 hasConceptScore W2024331834C153720581 @default.
- W2024331834 hasConceptScore W2024331834C16012445 @default.
- W2024331834 hasConceptScore W2024331834C163175372 @default.
- W2024331834 hasConceptScore W2024331834C168743327 @default.
- W2024331834 hasConceptScore W2024331834C178650346 @default.
- W2024331834 hasConceptScore W2024331834C2777895361 @default.
- W2024331834 hasConceptScore W2024331834C3020672099 @default.
- W2024331834 hasConceptScore W2024331834C33923547 @default.
- W2024331834 hasConceptScore W2024331834C41008148 @default.