Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024355574> ?p ?o ?g. }
- W2024355574 endingPage "31" @default.
- W2024355574 startingPage "19" @default.
- W2024355574 abstract "Abstract Breast cancer is the most common cancer among women. The effectiveness of treatment depends on early detection of the disease. Computer-aided diagnosis plays an increasingly important role in this field. Particularly, digital pathology has recently become of interest to a growing number of scientists. This work reports on advances in computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. The task at hand is to classify those as either benign or malignant. We propose a robust segmentation procedure giving satisfactory nuclei separation even when they are densely clustered in the image. Firstly, we determine centers of the nuclei using conditional erosion. The erosion is performed on a binary mask obtained with the use of adaptive thresholding in grayscale and clustering in a color space. Then, we use the multi-label fast marching algorithm initialized with the centers to obtain the final segmentation. A set of 84 features extracted from the nuclei is used in the classification by three different classifiers. The approach was tested on 450 microscopic images of fine needle biopsies obtained from patients of the Regional Hospital in Zielona Góra, Poland. The classification accuracy presented in this paper reaches 100%, which shows that a medical decision support system based on our method would provide accurate diagnostic information." @default.
- W2024355574 created "2016-06-24" @default.
- W2024355574 creator A5033719801 @default.
- W2024355574 creator A5036579240 @default.
- W2024355574 date "2014-03-01" @default.
- W2024355574 modified "2023-09-23" @default.
- W2024355574 title "Nuclei segmentation for computer-aided diagnosis of breast cancer" @default.
- W2024355574 cites W1481460540 @default.
- W2024355574 cites W1492885102 @default.
- W2024355574 cites W1500778456 @default.
- W2024355574 cites W1546172130 @default.
- W2024355574 cites W1563842020 @default.
- W2024355574 cites W1564244027 @default.
- W2024355574 cites W157146703 @default.
- W2024355574 cites W1587362683 @default.
- W2024355574 cites W1594031697 @default.
- W2024355574 cites W1663973292 @default.
- W2024355574 cites W172918197 @default.
- W2024355574 cites W1859522990 @default.
- W2024355574 cites W1885049223 @default.
- W2024355574 cites W1973956759 @default.
- W2024355574 cites W1977083128 @default.
- W2024355574 cites W1977556410 @default.
- W2024355574 cites W1981989535 @default.
- W2024355574 cites W1982920597 @default.
- W2024355574 cites W1988819287 @default.
- W2024355574 cites W1989459491 @default.
- W2024355574 cites W1990634755 @default.
- W2024355574 cites W1994596297 @default.
- W2024355574 cites W1994600722 @default.
- W2024355574 cites W1998644662 @default.
- W2024355574 cites W1999244633 @default.
- W2024355574 cites W1999492273 @default.
- W2024355574 cites W2001297728 @default.
- W2024355574 cites W2004350695 @default.
- W2024355574 cites W2009145030 @default.
- W2024355574 cites W2010537640 @default.
- W2024355574 cites W2012894098 @default.
- W2024355574 cites W2016748517 @default.
- W2024355574 cites W2036304194 @default.
- W2024355574 cites W2037815679 @default.
- W2024355574 cites W2040414046 @default.
- W2024355574 cites W2040838595 @default.
- W2024355574 cites W2044465660 @default.
- W2024355574 cites W2056137745 @default.
- W2024355574 cites W2070827346 @default.
- W2024355574 cites W2073949560 @default.
- W2024355574 cites W2085146467 @default.
- W2024355574 cites W2087123799 @default.
- W2024355574 cites W2087291293 @default.
- W2024355574 cites W2089569798 @default.
- W2024355574 cites W2098361586 @default.
- W2024355574 cites W2103243046 @default.
- W2024355574 cites W2107166114 @default.
- W2024355574 cites W2111545417 @default.
- W2024355574 cites W2112834177 @default.
- W2024355574 cites W2119049509 @default.
- W2024355574 cites W2119821739 @default.
- W2024355574 cites W2120580182 @default.
- W2024355574 cites W2122111042 @default.
- W2024355574 cites W2124245477 @default.
- W2024355574 cites W2125063860 @default.
- W2024355574 cites W2125306150 @default.
- W2024355574 cites W2133003941 @default.
- W2024355574 cites W2133866056 @default.
- W2024355574 cites W2134493718 @default.
- W2024355574 cites W2140259714 @default.
- W2024355574 cites W2142332605 @default.
- W2024355574 cites W2143461846 @default.
- W2024355574 cites W2144854846 @default.
- W2024355574 cites W2149273020 @default.
- W2024355574 cites W2150593711 @default.
- W2024355574 cites W2151538727 @default.
- W2024355574 cites W2152034657 @default.
- W2024355574 cites W2163606283 @default.
- W2024355574 cites W2164751492 @default.
- W2024355574 cites W2172169577 @default.
- W2024355574 cites W2799061466 @default.
- W2024355574 cites W3024925619 @default.
- W2024355574 cites W36055984 @default.
- W2024355574 cites W84072414 @default.
- W2024355574 cites W2131865006 @default.
- W2024355574 doi "https://doi.org/10.2478/amcs-2014-0002" @default.
- W2024355574 hasPublicationYear "2014" @default.
- W2024355574 type Work @default.
- W2024355574 sameAs 2024355574 @default.
- W2024355574 citedByCount "32" @default.
- W2024355574 countsByYear W20243555742016 @default.
- W2024355574 countsByYear W20243555742017 @default.
- W2024355574 countsByYear W20243555742018 @default.
- W2024355574 countsByYear W20243555742019 @default.
- W2024355574 countsByYear W20243555742020 @default.
- W2024355574 countsByYear W20243555742021 @default.
- W2024355574 countsByYear W20243555742022 @default.
- W2024355574 countsByYear W20243555742023 @default.
- W2024355574 crossrefType "journal-article" @default.
- W2024355574 hasAuthorship W2024355574A5033719801 @default.
- W2024355574 hasAuthorship W2024355574A5036579240 @default.