Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024358941> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2024358941 endingPage "5780" @default.
- W2024358941 startingPage "5761" @default.
- W2024358941 abstract "The fictitious spin-(1/2 operator formalism is used to describe the nuclear relaxation of spins I>(1/2 in solids for single or mixed relaxation processes. This permits us to describe the time evolution of the nuclear magnetization with a macroscopic kinetic equation extremely convenient for analyzing NMR data. Applications to the spin-spin and spin-lattice relaxations are given for quadrupolar (I=(3/2) and/or dipolar fluctuations for like (I=(3/2) and unlike (I=(3/2, Sensuremath{ge}(1/2) spins. In these calculations we have purposely chosen an exponential correlation function for all these fluctuating interactions to clearly point out the quantum behavior of the spin system. For quadrupolar relaxation, we predict a narrowing of the central line and a very large broadening of the satellite lines at sufficiently low temperature (${ensuremath{tau}}_{c}$ensuremath{gg}1/${ensuremath{omega}}_{0}$). We explain this seemingly paradoxical result by the nonexistence of the adiabatic part in the ${T}_{2}$ process for the central line of a half-integer spin I>(1/2.Our treatment takes into account the second-order dynamical shifts, which are, in some temperature range, of the same order of magnitude and even much greater than the homogeneous linewidths. Consequently, in the central line, exists an inherent structure or differential line shifts in the lines, respectively, in the absence or in the presence of a residual static quadrupolar interaction. We find a nonexponential time evolution of the longitudinal magnetization coming from a cross relaxation between different spin states. For dipolar relaxation (unlike spins I,S) we predict that such cross relaxation dominates largely, at low temperature, over the direct relaxation and enhances the ${T}_{1}^{mathrm{ensuremath{-}}1}$ by a factor ${ensuremath{omega}}_{I}$/(${ensuremath{omega}}_{I}$-${ensuremath{omega}}_{S}$). We have also studied the general case of quadrupolar and dipolar (like and unlike spins) relaxations. The occurrence of several distinct maxima in the temperature variation of the longitudinal relaxation rates comes from the quantum characteristic frequencies of the spin system (i.e., ${ensuremath{omega}}_{I}$, ${ensuremath{omega}}_{S}$, ${ensuremath{omega}}_{I}$-${ensuremath{omega}}_{S}$, ${ensuremath{omega}}_{Q}$,. . . ) rather than by using different ad hoc correlation times. The objective of the general theory proposed is indeed to interpret, with a single calculation, all the phenomena induced by the relaxation, including the residual nonaveraged static interaction always present in anisotropic motions. The effects of a residual quadrupolar interaction have been considered explicitly for quadrupolar and dipolar fluctuations.Finally, we have considered the quadrupolar relaxation of the double- and triple-quantum spectra. We show that the double-quantum spectra are composed of two lines whose temperature behavior is similar to that of the satellites in the monoquantum spectra, while the triple-quantum spectra has a temperature behavior similar to the central line of the single-quantum spectra. The theoretical results appear to be directly applicable for analyzing relaxation data for quadrupolar nuclear spins involving anisotropic motions in solids." @default.
- W2024358941 created "2016-06-24" @default.
- W2024358941 creator A5027687031 @default.
- W2024358941 creator A5038394155 @default.
- W2024358941 date "1988-04-01" @default.
- W2024358941 modified "2023-10-02" @default.
- W2024358941 title "Fictitious spin-(1/2 operators and multitransition nuclear relaxation in solids: General theory" @default.
- W2024358941 cites W1676912961 @default.
- W2024358941 cites W1971742344 @default.
- W2024358941 cites W1973128040 @default.
- W2024358941 cites W1981676576 @default.
- W2024358941 cites W1983014702 @default.
- W2024358941 cites W2004261815 @default.
- W2024358941 cites W2016436072 @default.
- W2024358941 cites W2022139346 @default.
- W2024358941 cites W2032858685 @default.
- W2024358941 cites W2033646112 @default.
- W2024358941 cites W2037923056 @default.
- W2024358941 cites W2040071446 @default.
- W2024358941 cites W2046578731 @default.
- W2024358941 cites W2046851218 @default.
- W2024358941 cites W2062446285 @default.
- W2024358941 cites W2062545669 @default.
- W2024358941 cites W2063513991 @default.
- W2024358941 cites W2063785360 @default.
- W2024358941 cites W2078610595 @default.
- W2024358941 cites W2078645664 @default.
- W2024358941 cites W2088758907 @default.
- W2024358941 doi "https://doi.org/10.1103/physrevb.37.5761" @default.
- W2024358941 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9943773" @default.
- W2024358941 hasPublicationYear "1988" @default.
- W2024358941 type Work @default.
- W2024358941 sameAs 2024358941 @default.
- W2024358941 citedByCount "44" @default.
- W2024358941 countsByYear W20243589412015 @default.
- W2024358941 countsByYear W20243589412016 @default.
- W2024358941 countsByYear W20243589412017 @default.
- W2024358941 countsByYear W20243589412018 @default.
- W2024358941 countsByYear W20243589412019 @default.
- W2024358941 countsByYear W20243589412020 @default.
- W2024358941 countsByYear W20243589412021 @default.
- W2024358941 crossrefType "journal-article" @default.
- W2024358941 hasAuthorship W2024358941A5027687031 @default.
- W2024358941 hasAuthorship W2024358941A5038394155 @default.
- W2024358941 hasConcept C115260700 @default.
- W2024358941 hasConcept C121332964 @default.
- W2024358941 hasConcept C124712363 @default.
- W2024358941 hasConcept C15744967 @default.
- W2024358941 hasConcept C173523689 @default.
- W2024358941 hasConcept C175249596 @default.
- W2024358941 hasConcept C26873012 @default.
- W2024358941 hasConcept C2776029896 @default.
- W2024358941 hasConcept C2778870898 @default.
- W2024358941 hasConcept C32546565 @default.
- W2024358941 hasConcept C36703968 @default.
- W2024358941 hasConcept C42704618 @default.
- W2024358941 hasConcept C62520636 @default.
- W2024358941 hasConcept C77805123 @default.
- W2024358941 hasConcept C97355855 @default.
- W2024358941 hasConceptScore W2024358941C115260700 @default.
- W2024358941 hasConceptScore W2024358941C121332964 @default.
- W2024358941 hasConceptScore W2024358941C124712363 @default.
- W2024358941 hasConceptScore W2024358941C15744967 @default.
- W2024358941 hasConceptScore W2024358941C173523689 @default.
- W2024358941 hasConceptScore W2024358941C175249596 @default.
- W2024358941 hasConceptScore W2024358941C26873012 @default.
- W2024358941 hasConceptScore W2024358941C2776029896 @default.
- W2024358941 hasConceptScore W2024358941C2778870898 @default.
- W2024358941 hasConceptScore W2024358941C32546565 @default.
- W2024358941 hasConceptScore W2024358941C36703968 @default.
- W2024358941 hasConceptScore W2024358941C42704618 @default.
- W2024358941 hasConceptScore W2024358941C62520636 @default.
- W2024358941 hasConceptScore W2024358941C77805123 @default.
- W2024358941 hasConceptScore W2024358941C97355855 @default.
- W2024358941 hasIssue "10" @default.
- W2024358941 hasLocation W20243589411 @default.
- W2024358941 hasLocation W20243589412 @default.
- W2024358941 hasOpenAccess W2024358941 @default.
- W2024358941 hasPrimaryLocation W20243589411 @default.
- W2024358941 hasRelatedWork W1967380022 @default.
- W2024358941 hasRelatedWork W1976234287 @default.
- W2024358941 hasRelatedWork W2013649461 @default.
- W2024358941 hasRelatedWork W2018995591 @default.
- W2024358941 hasRelatedWork W2029664661 @default.
- W2024358941 hasRelatedWork W2030782164 @default.
- W2024358941 hasRelatedWork W2078438211 @default.
- W2024358941 hasRelatedWork W2091049287 @default.
- W2024358941 hasRelatedWork W2133237014 @default.
- W2024358941 hasRelatedWork W2071950315 @default.
- W2024358941 hasVolume "37" @default.
- W2024358941 isParatext "false" @default.
- W2024358941 isRetracted "false" @default.
- W2024358941 magId "2024358941" @default.
- W2024358941 workType "article" @default.