Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024392244> ?p ?o ?g. }
- W2024392244 endingPage "654" @default.
- W2024392244 startingPage "619" @default.
- W2024392244 abstract "This paper presents a review of the most widely-used methods in order to determine the structure of eigenmodes propagating in periodic materials. Both real and Fourier domain methods are outlined. The basic concepts such as eigensolutions and their k-labeling, reciprocal lattice, Brillouin zones, etc., are gradually introduced and explained. Special attention is devoted on the physical aspect and all non usual nomenclatures are defined. In a similar way, all indispensable mathematics are described and their physical content expounded. For completeness, all nonessential notions in a first reading are maintained but deferred in Appendix A, Appendix B Invariance of the Hamiltonian under the change of variables, Appendix C Corollary: property of two commutating operators “they own a common set of eigenvectors with the same eigenvalue”, Appendix D An illustrative example of group theory “The translational symmetry group: representation and eigensolutions”, Appendix E 3-D Fourier domain method to determine the Bloch theorem, Appendix F Complex expression of wavevector in the bandgap above the cutoff frequency, Appendix H List of the most important Fourier transform formulas used in the framework of our two domains correspondence formalism , Appendix J Correspondence between the Dirac-comb concept and the Poisson summation formulas, Appendix I The Fourier transform of a Dirac-comb is Dirac-comb, Appendix G Splitting of the dispersion relation in two frequency bands. Going on with the tutorial, we show how Brillouin exploited the correspondence between the real and Fourier domain representations in order to explain the band structure and especially its periodicity in the Fourier domain. Then, following the way paved by Brillouin, we show how the Bloch theorem may be deduced from general considerations concerning Fourier analysis. To this aim, using nowadays available mathematical tools inspired from the fields of discrete signal analysis we have built a formalism which allows a comprehensive vision of the two domain correspondence. This formalism, developed on mathematical tools well fitted to describe periodic media, introduces appreciable shortcuts and appears to be versatile and easily transposable to different physical domains. Formalism application examples are given in the case of solid-state, photonic and phononic crystals." @default.
- W2024392244 created "2016-06-24" @default.
- W2024392244 creator A5018204924 @default.
- W2024392244 creator A5024035703 @default.
- W2024392244 creator A5046599701 @default.
- W2024392244 creator A5059781019 @default.
- W2024392244 creator A5062930294 @default.
- W2024392244 date "2013-04-01" @default.
- W2024392244 modified "2023-09-27" @default.
- W2024392244 title "A tutorial survey on waves propagating in periodic media: Electronic, photonic and phononic crystals. Perception of the Bloch theorem in both real and Fourier domains" @default.
- W2024392244 cites W1965015109 @default.
- W2024392244 cites W1973005665 @default.
- W2024392244 cites W1980618084 @default.
- W2024392244 cites W2011144661 @default.
- W2024392244 cites W2015471079 @default.
- W2024392244 cites W2029773245 @default.
- W2024392244 cites W2029980790 @default.
- W2024392244 cites W2039518636 @default.
- W2024392244 cites W2039886834 @default.
- W2024392244 cites W2039938123 @default.
- W2024392244 cites W2045462689 @default.
- W2024392244 cites W2045691762 @default.
- W2024392244 cites W2050824655 @default.
- W2024392244 cites W2058415984 @default.
- W2024392244 cites W2066613838 @default.
- W2024392244 cites W2068420086 @default.
- W2024392244 cites W2072303629 @default.
- W2024392244 cites W2075689277 @default.
- W2024392244 cites W2077463062 @default.
- W2024392244 cites W2078377596 @default.
- W2024392244 cites W2080114637 @default.
- W2024392244 cites W2081979022 @default.
- W2024392244 cites W2088676195 @default.
- W2024392244 cites W2092335013 @default.
- W2024392244 cites W2108904398 @default.
- W2024392244 cites W2132042908 @default.
- W2024392244 cites W3104513677 @default.
- W2024392244 cites W4241214195 @default.
- W2024392244 doi "https://doi.org/10.1016/j.wavemoti.2012.12.010" @default.
- W2024392244 hasPublicationYear "2013" @default.
- W2024392244 type Work @default.
- W2024392244 sameAs 2024392244 @default.
- W2024392244 citedByCount "45" @default.
- W2024392244 countsByYear W20243922442012 @default.
- W2024392244 countsByYear W20243922442014 @default.
- W2024392244 countsByYear W20243922442015 @default.
- W2024392244 countsByYear W20243922442016 @default.
- W2024392244 countsByYear W20243922442017 @default.
- W2024392244 countsByYear W20243922442018 @default.
- W2024392244 countsByYear W20243922442019 @default.
- W2024392244 countsByYear W20243922442020 @default.
- W2024392244 countsByYear W20243922442021 @default.
- W2024392244 countsByYear W20243922442022 @default.
- W2024392244 countsByYear W20243922442023 @default.
- W2024392244 crossrefType "journal-article" @default.
- W2024392244 hasAuthorship W2024392244A5018204924 @default.
- W2024392244 hasAuthorship W2024392244A5024035703 @default.
- W2024392244 hasAuthorship W2024392244A5046599701 @default.
- W2024392244 hasAuthorship W2024392244A5059781019 @default.
- W2024392244 hasAuthorship W2024392244A5062930294 @default.
- W2024392244 hasBestOaLocation W20243922442 @default.
- W2024392244 hasConcept C102519508 @default.
- W2024392244 hasConcept C109496249 @default.
- W2024392244 hasConcept C121332964 @default.
- W2024392244 hasConcept C134306372 @default.
- W2024392244 hasConcept C147120987 @default.
- W2024392244 hasConcept C149545384 @default.
- W2024392244 hasConcept C156785651 @default.
- W2024392244 hasConcept C16291881 @default.
- W2024392244 hasConcept C19118579 @default.
- W2024392244 hasConcept C203024314 @default.
- W2024392244 hasConcept C2778907946 @default.
- W2024392244 hasConcept C33923547 @default.
- W2024392244 hasConcept C37689646 @default.
- W2024392244 hasConcept C37914503 @default.
- W2024392244 hasConcept C50953366 @default.
- W2024392244 hasConcept C62520636 @default.
- W2024392244 hasConcept C76563020 @default.
- W2024392244 hasConcept C82601208 @default.
- W2024392244 hasConcept C89451469 @default.
- W2024392244 hasConceptScore W2024392244C102519508 @default.
- W2024392244 hasConceptScore W2024392244C109496249 @default.
- W2024392244 hasConceptScore W2024392244C121332964 @default.
- W2024392244 hasConceptScore W2024392244C134306372 @default.
- W2024392244 hasConceptScore W2024392244C147120987 @default.
- W2024392244 hasConceptScore W2024392244C149545384 @default.
- W2024392244 hasConceptScore W2024392244C156785651 @default.
- W2024392244 hasConceptScore W2024392244C16291881 @default.
- W2024392244 hasConceptScore W2024392244C19118579 @default.
- W2024392244 hasConceptScore W2024392244C203024314 @default.
- W2024392244 hasConceptScore W2024392244C2778907946 @default.
- W2024392244 hasConceptScore W2024392244C33923547 @default.
- W2024392244 hasConceptScore W2024392244C37689646 @default.
- W2024392244 hasConceptScore W2024392244C37914503 @default.
- W2024392244 hasConceptScore W2024392244C50953366 @default.
- W2024392244 hasConceptScore W2024392244C62520636 @default.
- W2024392244 hasConceptScore W2024392244C76563020 @default.
- W2024392244 hasConceptScore W2024392244C82601208 @default.