Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024429438> ?p ?o ?g. }
- W2024429438 endingPage "203" @default.
- W2024429438 startingPage "195" @default.
- W2024429438 abstract "Several paradigm shifting advances have recently been made on the composition and function of the chromosomal DNA replication machinery. Replisomes appear to be more fluid and dynamic than ever imagined, enabling rapid and efficient bypass of roadblocks and template lesions while faithfully replicating chromosomal DNA. This fluidity is determined by many layers of regulation, which reach beyond the role of replisome components themselves. In fact, recent studies show that additional polymerases, post-transcriptional modifications, and chromatin structure are required for complete chromosome duplication. Many of these factors are involved with the more complex events that take place during lagging-strand synthesis. These, and other recent discoveries, are the focus of this review. Several paradigm shifting advances have recently been made on the composition and function of the chromosomal DNA replication machinery. Replisomes appear to be more fluid and dynamic than ever imagined, enabling rapid and efficient bypass of roadblocks and template lesions while faithfully replicating chromosomal DNA. This fluidity is determined by many layers of regulation, which reach beyond the role of replisome components themselves. In fact, recent studies show that additional polymerases, post-transcriptional modifications, and chromatin structure are required for complete chromosome duplication. Many of these factors are involved with the more complex events that take place during lagging-strand synthesis. These, and other recent discoveries, are the focus of this review. nanoscale DNA biopointers consist of short (<200 bp) DNA duplexes labeled with biotin. They bind the multivalent streptavidin molecule, which can also bind a biotinylated protein, thereby coupling the DNA molecule to the protein, through the streptavidin bridge. Binding of biopointers to proteins is used to map the localization of proteins in EM. Streptavidin-labeled biopointers have a high specificity for their target and are small enough not to obscure the target, yet are large enough to visualize by EM. bacterial cells undergo a response to DNA damage (SOS DNA damage response) that helps them to survive. The major trigger for the SOS response is accumulation of ssDNA, which is recognized and bound by RecA to form filamentous structures. RecA (recombinase A) filament formation activates RecA to function as a co-protease for cleavage of the transcriptional repressor, LexA (locus for X-ray sensitivity A). This results in dissociation of the LexA repressor from DNA and expression of more than 40 genes involved in the cellular response to damaged DNA. These proteins include enzymes required for nucleotide excision repair, base excision repair, DNA recombination, and cell division. a frequent challenge for fluorescence microscopy that applies high intensity illumination is production of reactive oxygen species that are toxic to cells (phototoxicity) and also bleaching of fluorophores during the course of extended or repeated measurements (photobleaching). Use of a high power light-emitting diode (LED), which can emit short pulses of light (0.5–2 ms) (stroboscopic illumination) to excite fluorophores, maximizes signal intensities and minimizes illumination time, thus reducing phototoxicity and photobleaching. The replication system of the T4 phage serves as a relatively simple system for studying DNA replication in vitro. Reconstituted from purified components it recapitulates formation and propagation of DNA replication in vitro. The eight essential components include a DNA polymerase harboring both nucleotide incorporation and 3′-5′ proofreading exonuclease activities (gp43), a ring-shaped homotrimeric processivity factor (gp45), loaded on a primed template by the clamp loader (gp44/62). The polymerase–clamp complex is processive and displaces ssDNA binding protein (gp32) from DNA. A helicase (gp41) unwinds the duplex DNA and primase (gp61) binds the helicase to initiate primer synthesis. A helicase accessory factor (gp59) assists helicase loading. based on the principle that a thin, exponentially decaying, evanescent field of excitation can be generated at the interface of two media of different refractive index (RI) (e.g., the glass coverslip and the biological specimen). This enables the selective excitation of fluorophores in a thin optical plane above the light beam (<200 nm), thereby preventing fluorescence emission from molecules that are not in the primary focal plane (e.g., molecules that are not bound to DNA that is restricted to the focal plane)." @default.
- W2024429438 created "2016-06-24" @default.
- W2024429438 creator A5041536802 @default.
- W2024429438 creator A5054494155 @default.
- W2024429438 date "2013-04-01" @default.
- W2024429438 modified "2023-10-16" @default.
- W2024429438 title "New insights into replisome fluidity during chromosome replication" @default.
- W2024429438 cites W1507551858 @default.
- W2024429438 cites W1855958026 @default.
- W2024429438 cites W1866059572 @default.
- W2024429438 cites W1968437581 @default.
- W2024429438 cites W1972169630 @default.
- W2024429438 cites W1975001355 @default.
- W2024429438 cites W1975621661 @default.
- W2024429438 cites W1975997119 @default.
- W2024429438 cites W1977025451 @default.
- W2024429438 cites W1979728921 @default.
- W2024429438 cites W1987717977 @default.
- W2024429438 cites W1992869717 @default.
- W2024429438 cites W1994775292 @default.
- W2024429438 cites W1996421216 @default.
- W2024429438 cites W1996482638 @default.
- W2024429438 cites W1997289911 @default.
- W2024429438 cites W1999350701 @default.
- W2024429438 cites W1999925341 @default.
- W2024429438 cites W2001731565 @default.
- W2024429438 cites W2007214324 @default.
- W2024429438 cites W2007362519 @default.
- W2024429438 cites W2007637828 @default.
- W2024429438 cites W2009509451 @default.
- W2024429438 cites W2021961656 @default.
- W2024429438 cites W2032004743 @default.
- W2024429438 cites W2032820571 @default.
- W2024429438 cites W2038427905 @default.
- W2024429438 cites W2041859788 @default.
- W2024429438 cites W2044440192 @default.
- W2024429438 cites W2044941418 @default.
- W2024429438 cites W2046947712 @default.
- W2024429438 cites W2049171516 @default.
- W2024429438 cites W2054204989 @default.
- W2024429438 cites W2054877486 @default.
- W2024429438 cites W2057226120 @default.
- W2024429438 cites W2059754005 @default.
- W2024429438 cites W2063771471 @default.
- W2024429438 cites W2064154094 @default.
- W2024429438 cites W2066799534 @default.
- W2024429438 cites W2071246239 @default.
- W2024429438 cites W2072139304 @default.
- W2024429438 cites W2072308536 @default.
- W2024429438 cites W2072884667 @default.
- W2024429438 cites W2072986205 @default.
- W2024429438 cites W2073242436 @default.
- W2024429438 cites W2085866527 @default.
- W2024429438 cites W2089594949 @default.
- W2024429438 cites W2095146606 @default.
- W2024429438 cites W2098517972 @default.
- W2024429438 cites W2099487576 @default.
- W2024429438 cites W2101955906 @default.
- W2024429438 cites W2102988039 @default.
- W2024429438 cites W2104247890 @default.
- W2024429438 cites W2105413529 @default.
- W2024429438 cites W2107935862 @default.
- W2024429438 cites W2111958293 @default.
- W2024429438 cites W2113126534 @default.
- W2024429438 cites W2113305379 @default.
- W2024429438 cites W2116036235 @default.
- W2024429438 cites W2119344497 @default.
- W2024429438 cites W2121980126 @default.
- W2024429438 cites W2124221060 @default.
- W2024429438 cites W2133038855 @default.
- W2024429438 cites W2135364630 @default.
- W2024429438 cites W2147821579 @default.
- W2024429438 cites W2152115601 @default.
- W2024429438 cites W2155956068 @default.
- W2024429438 cites W2156302599 @default.
- W2024429438 cites W2158664500 @default.
- W2024429438 cites W2158990839 @default.
- W2024429438 cites W2159631927 @default.
- W2024429438 cites W2165749026 @default.
- W2024429438 cites W2179903983 @default.
- W2024429438 doi "https://doi.org/10.1016/j.tibs.2012.10.003" @default.
- W2024429438 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3597760" @default.
- W2024429438 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23153958" @default.
- W2024429438 hasPublicationYear "2013" @default.
- W2024429438 type Work @default.
- W2024429438 sameAs 2024429438 @default.
- W2024429438 citedByCount "28" @default.
- W2024429438 countsByYear W20244294382013 @default.
- W2024429438 countsByYear W20244294382014 @default.
- W2024429438 countsByYear W20244294382015 @default.
- W2024429438 countsByYear W20244294382016 @default.
- W2024429438 countsByYear W20244294382017 @default.
- W2024429438 countsByYear W20244294382018 @default.
- W2024429438 countsByYear W20244294382019 @default.
- W2024429438 countsByYear W20244294382020 @default.
- W2024429438 countsByYear W20244294382021 @default.
- W2024429438 crossrefType "journal-article" @default.
- W2024429438 hasAuthorship W2024429438A5041536802 @default.