Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024430112> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2024430112 endingPage "233" @default.
- W2024430112 startingPage "217" @default.
- W2024430112 abstract "This paper examines effectiveness of Q-learning as a tool for specifying agent attributes and behaviours in agent-based supply network models. Agent-based modelling (ABM) has been increasingly employed to study supply chain and supply network problems. A challenging task in building agent-based supply network models is to properly specify agent attributes and behaviours. Machine learning techniques, such as Q-learning, can be a useful tool for this purpose. Q-learning is a reinforcement learning technique that has been shown to be an effective adaptation and searching mechanism in distributed settings. In this study, Q-learning is employed by supply network agents to search for ‘optimal’ values for a parameter in their operating policies simultaneously and independently. Methods are designed to identify the ‘optimal’ parameter values against which effectiveness of the learning is evaluated. Robustness of the learning's effectiveness is also examined through consideration of different model settings and scenarios. Results show that Q-learning is very effective in finding the ‘optimal’ parameter values in all model settings and scenarios considered." @default.
- W2024430112 created "2016-06-24" @default.
- W2024430112 creator A5003350752 @default.
- W2024430112 creator A5032668039 @default.
- W2024430112 date "2007-05-01" @default.
- W2024430112 modified "2023-09-25" @default.
- W2024430112 title "Effectiveness of Q-learning as a tool for calibrating agent-based supply network models" @default.
- W2024430112 cites W13597437 @default.
- W2024430112 cites W1508305242 @default.
- W2024430112 cites W195324671 @default.
- W2024430112 cites W1968421086 @default.
- W2024430112 cites W1992544712 @default.
- W2024430112 cites W1994673263 @default.
- W2024430112 cites W2004335135 @default.
- W2024430112 cites W2034667470 @default.
- W2024430112 cites W2035934714 @default.
- W2024430112 cites W4252999557 @default.
- W2024430112 doi "https://doi.org/10.1080/17517570701275390" @default.
- W2024430112 hasPublicationYear "2007" @default.
- W2024430112 type Work @default.
- W2024430112 sameAs 2024430112 @default.
- W2024430112 citedByCount "28" @default.
- W2024430112 countsByYear W20244301122012 @default.
- W2024430112 countsByYear W20244301122013 @default.
- W2024430112 countsByYear W20244301122015 @default.
- W2024430112 countsByYear W20244301122016 @default.
- W2024430112 countsByYear W20244301122022 @default.
- W2024430112 countsByYear W20244301122023 @default.
- W2024430112 crossrefType "journal-article" @default.
- W2024430112 hasAuthorship W2024430112A5003350752 @default.
- W2024430112 hasAuthorship W2024430112A5032668039 @default.
- W2024430112 hasConcept C104317684 @default.
- W2024430112 hasConcept C108713360 @default.
- W2024430112 hasConcept C119857082 @default.
- W2024430112 hasConcept C120665830 @default.
- W2024430112 hasConcept C121332964 @default.
- W2024430112 hasConcept C127413603 @default.
- W2024430112 hasConcept C139807058 @default.
- W2024430112 hasConcept C154945302 @default.
- W2024430112 hasConcept C163258240 @default.
- W2024430112 hasConcept C17744445 @default.
- W2024430112 hasConcept C185592680 @default.
- W2024430112 hasConcept C188116033 @default.
- W2024430112 hasConcept C199539241 @default.
- W2024430112 hasConcept C201995342 @default.
- W2024430112 hasConcept C2780451532 @default.
- W2024430112 hasConcept C2780579389 @default.
- W2024430112 hasConcept C41008148 @default.
- W2024430112 hasConcept C55493867 @default.
- W2024430112 hasConcept C62520636 @default.
- W2024430112 hasConcept C63479239 @default.
- W2024430112 hasConcept C97541855 @default.
- W2024430112 hasConceptScore W2024430112C104317684 @default.
- W2024430112 hasConceptScore W2024430112C108713360 @default.
- W2024430112 hasConceptScore W2024430112C119857082 @default.
- W2024430112 hasConceptScore W2024430112C120665830 @default.
- W2024430112 hasConceptScore W2024430112C121332964 @default.
- W2024430112 hasConceptScore W2024430112C127413603 @default.
- W2024430112 hasConceptScore W2024430112C139807058 @default.
- W2024430112 hasConceptScore W2024430112C154945302 @default.
- W2024430112 hasConceptScore W2024430112C163258240 @default.
- W2024430112 hasConceptScore W2024430112C17744445 @default.
- W2024430112 hasConceptScore W2024430112C185592680 @default.
- W2024430112 hasConceptScore W2024430112C188116033 @default.
- W2024430112 hasConceptScore W2024430112C199539241 @default.
- W2024430112 hasConceptScore W2024430112C201995342 @default.
- W2024430112 hasConceptScore W2024430112C2780451532 @default.
- W2024430112 hasConceptScore W2024430112C2780579389 @default.
- W2024430112 hasConceptScore W2024430112C41008148 @default.
- W2024430112 hasConceptScore W2024430112C55493867 @default.
- W2024430112 hasConceptScore W2024430112C62520636 @default.
- W2024430112 hasConceptScore W2024430112C63479239 @default.
- W2024430112 hasConceptScore W2024430112C97541855 @default.
- W2024430112 hasIssue "2" @default.
- W2024430112 hasLocation W20244301121 @default.
- W2024430112 hasOpenAccess W2024430112 @default.
- W2024430112 hasPrimaryLocation W20244301121 @default.
- W2024430112 hasRelatedWork W2123899227 @default.
- W2024430112 hasRelatedWork W2154793587 @default.
- W2024430112 hasRelatedWork W2542227197 @default.
- W2024430112 hasRelatedWork W2796400896 @default.
- W2024430112 hasRelatedWork W2959276766 @default.
- W2024430112 hasRelatedWork W2961085424 @default.
- W2024430112 hasRelatedWork W3037422413 @default.
- W2024430112 hasRelatedWork W4206669594 @default.
- W2024430112 hasRelatedWork W4295941380 @default.
- W2024430112 hasRelatedWork W4319083788 @default.
- W2024430112 hasVolume "1" @default.
- W2024430112 isParatext "false" @default.
- W2024430112 isRetracted "false" @default.
- W2024430112 magId "2024430112" @default.
- W2024430112 workType "article" @default.