Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024437834> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2024437834 endingPage "3448" @default.
- W2024437834 startingPage "3432" @default.
- W2024437834 abstract "Binary outcomes are very common in medical studies. Logistic regression is typically used to analyze independent binary outcomes while generalized estimating equations regression methods (GEE) are often used to analyze correlated binary data. Several goodness-of-fit (GoF) statistics for the GEE methods have been developed recently. The objective of this study is to compare the power and Type I error rates of existing GEE GoF statistics using simulated data under different conditions. The number of clusters was varied in each condition. Different tested models included discrete, continuous, observation-specific and/or cluster-specific covariates. Two or three observations per cluster were generated with various correlations between observations. No single GEE GoF statistic performed best across all conditions. Generally, the larger the number of clusters, the more powerful the GEE GoF statistics. The GEE GoF statistics with correctly specified working correlation matrices tended to be robust in terms of Type I error rates and more powerful. For data with two observations per cluster, both Evans and Pan's statistics [1998. Goodness of fit in two models for clustered binary data. Ph.D. Dissertation, University of Massachusetts; 2002a. Goodness-of-fit tests for GEE with correlated binary data. Scand. J. Stat. 29(1), 101-110.] and Barnhart-Williamson's statistics [1998. Goodness-of-fit tests for GEE modeling with binary data. Biometrics 54, 720-729.] performed well for detecting the effect of the omitted interaction between two binary covariates. Barnhart-Williamson's statistics were generally the most powerful for detecting other types of interactions in models with at least one continuous covariate. For data with three observations per cluster, Evans and Pan's statistics performed best. fit in two models for clustered binary data. Ph.D. Dissertation, University of Massachusetts; 2002a. Goodness-of-fit tests for GEE with correlated binary data. Scand. J. Stat. 29(1), 101-110.] statistics performed best." @default.
- W2024437834 created "2016-06-24" @default.
- W2024437834 creator A5075384296 @default.
- W2024437834 creator A5087743666 @default.
- W2024437834 date "2006-08-01" @default.
- W2024437834 modified "2023-09-27" @default.
- W2024437834 title "Power and Type I error rates of goodness-of-fit statistics for binomial generalized estimating equations (GEE) models" @default.
- W2024437834 cites W1978136073 @default.
- W2024437834 cites W1982521435 @default.
- W2024437834 cites W2010098948 @default.
- W2024437834 cites W2018405966 @default.
- W2024437834 cites W2031687681 @default.
- W2024437834 cites W2033608916 @default.
- W2024437834 cites W2039640981 @default.
- W2024437834 cites W2051747556 @default.
- W2024437834 cites W2059104151 @default.
- W2024437834 cites W2066947937 @default.
- W2024437834 cites W2067192762 @default.
- W2024437834 cites W2073006623 @default.
- W2024437834 cites W2101861337 @default.
- W2024437834 cites W2103958007 @default.
- W2024437834 cites W2110776215 @default.
- W2024437834 cites W2139361537 @default.
- W2024437834 cites W2140468511 @default.
- W2024437834 cites W2149860264 @default.
- W2024437834 cites W2150772180 @default.
- W2024437834 cites W2266995761 @default.
- W2024437834 cites W2312256583 @default.
- W2024437834 cites W2800559265 @default.
- W2024437834 cites W4249497568 @default.
- W2024437834 doi "https://doi.org/10.1016/j.csda.2005.07.017" @default.
- W2024437834 hasPublicationYear "2006" @default.
- W2024437834 type Work @default.
- W2024437834 sameAs 2024437834 @default.
- W2024437834 citedByCount "12" @default.
- W2024437834 countsByYear W20244378342012 @default.
- W2024437834 countsByYear W20244378342014 @default.
- W2024437834 countsByYear W20244378342015 @default.
- W2024437834 countsByYear W20244378342016 @default.
- W2024437834 countsByYear W20244378342019 @default.
- W2024437834 countsByYear W20244378342022 @default.
- W2024437834 crossrefType "journal-article" @default.
- W2024437834 hasAuthorship W2024437834A5075384296 @default.
- W2024437834 hasAuthorship W2024437834A5087743666 @default.
- W2024437834 hasConcept C105795698 @default.
- W2024437834 hasConcept C132480984 @default.
- W2024437834 hasConcept C149782125 @default.
- W2024437834 hasConcept C152877465 @default.
- W2024437834 hasConcept C197656967 @default.
- W2024437834 hasConcept C27403532 @default.
- W2024437834 hasConcept C2781315470 @default.
- W2024437834 hasConcept C28826006 @default.
- W2024437834 hasConcept C33923547 @default.
- W2024437834 hasConcept C40696583 @default.
- W2024437834 hasConcept C41054675 @default.
- W2024437834 hasConcept C41587187 @default.
- W2024437834 hasConcept C53084192 @default.
- W2024437834 hasConceptScore W2024437834C105795698 @default.
- W2024437834 hasConceptScore W2024437834C132480984 @default.
- W2024437834 hasConceptScore W2024437834C149782125 @default.
- W2024437834 hasConceptScore W2024437834C152877465 @default.
- W2024437834 hasConceptScore W2024437834C197656967 @default.
- W2024437834 hasConceptScore W2024437834C27403532 @default.
- W2024437834 hasConceptScore W2024437834C2781315470 @default.
- W2024437834 hasConceptScore W2024437834C28826006 @default.
- W2024437834 hasConceptScore W2024437834C33923547 @default.
- W2024437834 hasConceptScore W2024437834C40696583 @default.
- W2024437834 hasConceptScore W2024437834C41054675 @default.
- W2024437834 hasConceptScore W2024437834C41587187 @default.
- W2024437834 hasConceptScore W2024437834C53084192 @default.
- W2024437834 hasIssue "12" @default.
- W2024437834 hasLocation W20244378341 @default.
- W2024437834 hasOpenAccess W2024437834 @default.
- W2024437834 hasPrimaryLocation W20244378341 @default.
- W2024437834 hasRelatedWork W1965033712 @default.
- W2024437834 hasRelatedWork W2024437834 @default.
- W2024437834 hasRelatedWork W2033608916 @default.
- W2024437834 hasRelatedWork W2101347185 @default.
- W2024437834 hasRelatedWork W2121754044 @default.
- W2024437834 hasRelatedWork W2134342962 @default.
- W2024437834 hasRelatedWork W2416470294 @default.
- W2024437834 hasRelatedWork W2498852159 @default.
- W2024437834 hasRelatedWork W3195713375 @default.
- W2024437834 hasRelatedWork W4214580054 @default.
- W2024437834 hasVolume "50" @default.
- W2024437834 isParatext "false" @default.
- W2024437834 isRetracted "false" @default.
- W2024437834 magId "2024437834" @default.
- W2024437834 workType "article" @default.