Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024444850> ?p ?o ?g. }
- W2024444850 endingPage "41" @default.
- W2024444850 startingPage "29" @default.
- W2024444850 abstract "Velocity spectra are essential in characterizing turbulent flows. The Acoustic Doppler Velocimeter (ADV) provides three-dimensional time series data at a single point in space which are used for calculating velocity spectra. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic Doppler processing. This contamination results in a flattening of the velocity spectra at high frequencies (O(10)Hz). This paper demonstrates two elementary methods for attenuating instrument noise and improving velocity spectra. First, a “Noise Auto-Correlation” (NAC) approach utilizes the correlation and spectral properties of instrument noise to identify and attenuate the noise in the spectra. Second, a Proper Orthogonal Decomposition (POD) approach utilizes a modal decomposition of the data and attenuates the instrument noise by neglecting the higher-order modes in a time-series reconstruction. The methods are applied to ADV data collected in a tidal channel with maximum horizontal mean currents up to 2 m/s. The spectra estimated using both approaches exhibit an f−5/3 slope, consistent with a turbulent inertial sub-range, over a wider frequency range than the raw spectra. In contrast, a Gaussian filter approach yields spectra with a sharp decrease at high frequencies. In an example application, the extended inertial sub-range from the NAC method increased the confidence in estimating the turbulent dissipation rate, which requires fitting the amplitude of the f−5/3 region. The resulting dissipation rates have smaller uncertainties and are more consistent with an assumed local balance to shear production, especially for mean horizontal currents less than 0.8 m/s." @default.
- W2024444850 created "2016-06-24" @default.
- W2024444850 creator A5037486583 @default.
- W2024444850 creator A5039502986 @default.
- W2024444850 creator A5057212020 @default.
- W2024444850 creator A5089119630 @default.
- W2024444850 date "2014-06-01" @default.
- W2024444850 modified "2023-09-25" @default.
- W2024444850 title "Noise correction of turbulent spectra obtained from acoustic doppler velocimeters" @default.
- W2024444850 cites W1581924338 @default.
- W2024444850 cites W1584119168 @default.
- W2024444850 cites W1633869374 @default.
- W2024444850 cites W166927295 @default.
- W2024444850 cites W1968116180 @default.
- W2024444850 cites W1970633933 @default.
- W2024444850 cites W1974232401 @default.
- W2024444850 cites W1985471924 @default.
- W2024444850 cites W1996007549 @default.
- W2024444850 cites W2009327160 @default.
- W2024444850 cites W2018329690 @default.
- W2024444850 cites W2022827906 @default.
- W2024444850 cites W2024917575 @default.
- W2024444850 cites W2032266670 @default.
- W2024444850 cites W2038813755 @default.
- W2024444850 cites W2046513331 @default.
- W2024444850 cites W2056780952 @default.
- W2024444850 cites W2060536129 @default.
- W2024444850 cites W2062872776 @default.
- W2024444850 cites W2071743743 @default.
- W2024444850 cites W2074768444 @default.
- W2024444850 cites W2075701642 @default.
- W2024444850 cites W2077593122 @default.
- W2024444850 cites W2077820085 @default.
- W2024444850 cites W2081727378 @default.
- W2024444850 cites W2083676914 @default.
- W2024444850 cites W2084352621 @default.
- W2024444850 cites W2085049580 @default.
- W2024444850 cites W2095947499 @default.
- W2024444850 cites W2107585741 @default.
- W2024444850 cites W2110451149 @default.
- W2024444850 cites W2122444533 @default.
- W2024444850 cites W2122722306 @default.
- W2024444850 cites W2125104922 @default.
- W2024444850 cites W2128016131 @default.
- W2024444850 cites W2135233408 @default.
- W2024444850 cites W2139912510 @default.
- W2024444850 cites W2140683366 @default.
- W2024444850 cites W2144873597 @default.
- W2024444850 cites W2159682008 @default.
- W2024444850 cites W2166361350 @default.
- W2024444850 cites W2173769297 @default.
- W2024444850 cites W2180927545 @default.
- W2024444850 cites W2563263390 @default.
- W2024444850 cites W2565264375 @default.
- W2024444850 cites W2915816001 @default.
- W2024444850 cites W4239978912 @default.
- W2024444850 cites W4363603784 @default.
- W2024444850 doi "https://doi.org/10.1016/j.flowmeasinst.2014.03.001" @default.
- W2024444850 hasPublicationYear "2014" @default.
- W2024444850 type Work @default.
- W2024444850 sameAs 2024444850 @default.
- W2024444850 citedByCount "32" @default.
- W2024444850 countsByYear W20244448502012 @default.
- W2024444850 countsByYear W20244448502014 @default.
- W2024444850 countsByYear W20244448502015 @default.
- W2024444850 countsByYear W20244448502016 @default.
- W2024444850 countsByYear W20244448502017 @default.
- W2024444850 countsByYear W20244448502018 @default.
- W2024444850 countsByYear W20244448502019 @default.
- W2024444850 countsByYear W20244448502020 @default.
- W2024444850 countsByYear W20244448502021 @default.
- W2024444850 countsByYear W20244448502022 @default.
- W2024444850 countsByYear W20244448502023 @default.
- W2024444850 crossrefType "journal-article" @default.
- W2024444850 hasAuthorship W2024444850A5037486583 @default.
- W2024444850 hasAuthorship W2024444850A5039502986 @default.
- W2024444850 hasAuthorship W2024444850A5057212020 @default.
- W2024444850 hasAuthorship W2024444850A5089119630 @default.
- W2024444850 hasConcept C105795698 @default.
- W2024444850 hasConcept C112633086 @default.
- W2024444850 hasConcept C115961682 @default.
- W2024444850 hasConcept C121332964 @default.
- W2024444850 hasConcept C1276947 @default.
- W2024444850 hasConcept C135402231 @default.
- W2024444850 hasConcept C142757262 @default.
- W2024444850 hasConcept C154945302 @default.
- W2024444850 hasConcept C196558001 @default.
- W2024444850 hasConcept C24890656 @default.
- W2024444850 hasConcept C30475298 @default.
- W2024444850 hasConcept C33923547 @default.
- W2024444850 hasConcept C41008148 @default.
- W2024444850 hasConcept C4839761 @default.
- W2024444850 hasConcept C57879066 @default.
- W2024444850 hasConcept C97355855 @default.
- W2024444850 hasConcept C99498987 @default.
- W2024444850 hasConceptScore W2024444850C105795698 @default.
- W2024444850 hasConceptScore W2024444850C112633086 @default.
- W2024444850 hasConceptScore W2024444850C115961682 @default.