Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024457773> ?p ?o ?g. }
- W2024457773 endingPage "211" @default.
- W2024457773 startingPage "201" @default.
- W2024457773 abstract "Abstract Estimating forest structural attributes using multispectral remote sensing is challenging because of the saturation of multispectral indices at high canopy cover. The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters including mean diameter-at-breast height (DBH), mean tree height and tree density of a closed canopy beech forest ( Fagus sylvatica L.). Airborne HyMap images and data on forest structural attributes were collected from the Majella National Park, Italy in July 2004. The predictive performances of vegetation indices (VI) derived from all possible two-band combinations (VI ( i , j ) = ( R i − R j )/( R i + R j ), where R i and R j = reflectance in any two bands) were evaluated using calibration ( n = 33) and test ( n = 20) data sets. The potential of partial least squares (PLS) regression, a multivariate technique involving several bands was also assessed. New VIs based on the contrast between reflectance in the red-edge shoulder (756–820 nm) and the water absorption feature centred at 1200 nm (1172–1320 nm) were found to show higher correlations with the forest structural parameters than standard VIs derived from NIR and visible reflectance (i.e. the normalised difference vegetation index, NDVI). PLS regression showed a slight improvement in estimating the beech forest structural attributes (prediction errors of 27.6%, 32.6% and 46.4% for mean DBH, height and tree density, respectively) compared to VIs using linear regression models (prediction errors of 27.8%, 35.8% and 48.3% for mean DBH, height and tree density, respectively). Mean DBH was the best predicted variable among the stand parameters (calibration R 2 = 0.62 for an exponential model fit and standard error of prediction = 5.12 cm, i.e. 25% of the mean). The predicted map of mean DBH revealed high heterogeneity in the beech forest structure in the study area. The spatial variability of mean DBH occurs at less than 450 m. The DBH map could be useful to forest management in many ways, e.g. thinning of coppice to promote diameter growth, to assess the effects of management on forest structure or to detect changes in the forest structure caused by anthropogenic and natural factors." @default.
- W2024457773 created "2016-06-24" @default.
- W2024457773 creator A5022441956 @default.
- W2024457773 creator A5037691648 @default.
- W2024457773 creator A5073807486 @default.
- W2024457773 date "2009-06-01" @default.
- W2024457773 modified "2023-10-13" @default.
- W2024457773 title "Mapping beech (Fagus sylvatica L.) forest structure with airborne hyperspectral imagery" @default.
- W2024457773 cites W1563636823 @default.
- W2024457773 cites W1685317713 @default.
- W2024457773 cites W1967248741 @default.
- W2024457773 cites W1972714362 @default.
- W2024457773 cites W1974416151 @default.
- W2024457773 cites W1976723446 @default.
- W2024457773 cites W1976784693 @default.
- W2024457773 cites W1987097445 @default.
- W2024457773 cites W2021793377 @default.
- W2024457773 cites W2023901627 @default.
- W2024457773 cites W2027792629 @default.
- W2024457773 cites W2030106896 @default.
- W2024457773 cites W2046404820 @default.
- W2024457773 cites W2048016791 @default.
- W2024457773 cites W2070676234 @default.
- W2024457773 cites W2075505566 @default.
- W2024457773 cites W2078996926 @default.
- W2024457773 cites W2081548633 @default.
- W2024457773 cites W2082142050 @default.
- W2024457773 cites W2089464686 @default.
- W2024457773 cites W2091493105 @default.
- W2024457773 cites W2092722122 @default.
- W2024457773 cites W2095144920 @default.
- W2024457773 cites W2095523661 @default.
- W2024457773 cites W2096599785 @default.
- W2024457773 cites W2097970470 @default.
- W2024457773 cites W2103626949 @default.
- W2024457773 cites W2105756833 @default.
- W2024457773 cites W2107998917 @default.
- W2024457773 cites W2112980244 @default.
- W2024457773 cites W2113530671 @default.
- W2024457773 cites W2113597849 @default.
- W2024457773 cites W2133751300 @default.
- W2024457773 cites W2134213291 @default.
- W2024457773 cites W2139584183 @default.
- W2024457773 cites W2140673614 @default.
- W2024457773 cites W2143132877 @default.
- W2024457773 cites W2151880387 @default.
- W2024457773 cites W2155617392 @default.
- W2024457773 cites W2155863249 @default.
- W2024457773 cites W2158863190 @default.
- W2024457773 cites W2162298841 @default.
- W2024457773 cites W2163241395 @default.
- W2024457773 cites W2170738341 @default.
- W2024457773 cites W2208909855 @default.
- W2024457773 cites W2248139498 @default.
- W2024457773 cites W3016260808 @default.
- W2024457773 doi "https://doi.org/10.1016/j.jag.2009.01.006" @default.
- W2024457773 hasPublicationYear "2009" @default.
- W2024457773 type Work @default.
- W2024457773 sameAs 2024457773 @default.
- W2024457773 citedByCount "37" @default.
- W2024457773 countsByYear W20244577732012 @default.
- W2024457773 countsByYear W20244577732013 @default.
- W2024457773 countsByYear W20244577732014 @default.
- W2024457773 countsByYear W20244577732015 @default.
- W2024457773 countsByYear W20244577732016 @default.
- W2024457773 countsByYear W20244577732017 @default.
- W2024457773 countsByYear W20244577732018 @default.
- W2024457773 countsByYear W20244577732020 @default.
- W2024457773 countsByYear W20244577732021 @default.
- W2024457773 countsByYear W20244577732022 @default.
- W2024457773 crossrefType "journal-article" @default.
- W2024457773 hasAuthorship W2024457773A5022441956 @default.
- W2024457773 hasAuthorship W2024457773A5037691648 @default.
- W2024457773 hasAuthorship W2024457773A5073807486 @default.
- W2024457773 hasConcept C159078339 @default.
- W2024457773 hasConcept C205649164 @default.
- W2024457773 hasConcept C2776500793 @default.
- W2024457773 hasConcept C2780144066 @default.
- W2024457773 hasConcept C39432304 @default.
- W2024457773 hasConcept C62649853 @default.
- W2024457773 hasConcept C97137747 @default.
- W2024457773 hasConceptScore W2024457773C159078339 @default.
- W2024457773 hasConceptScore W2024457773C205649164 @default.
- W2024457773 hasConceptScore W2024457773C2776500793 @default.
- W2024457773 hasConceptScore W2024457773C2780144066 @default.
- W2024457773 hasConceptScore W2024457773C39432304 @default.
- W2024457773 hasConceptScore W2024457773C62649853 @default.
- W2024457773 hasConceptScore W2024457773C97137747 @default.
- W2024457773 hasIssue "3" @default.
- W2024457773 hasLocation W20244577731 @default.
- W2024457773 hasOpenAccess W2024457773 @default.
- W2024457773 hasPrimaryLocation W20244577731 @default.
- W2024457773 hasRelatedWork W1975670731 @default.
- W2024457773 hasRelatedWork W2121816206 @default.
- W2024457773 hasRelatedWork W2149590789 @default.
- W2024457773 hasRelatedWork W2319925959 @default.
- W2024457773 hasRelatedWork W2344158463 @default.
- W2024457773 hasRelatedWork W2494541852 @default.