Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024471006> ?p ?o ?g. }
- W2024471006 endingPage "1042" @default.
- W2024471006 startingPage "1033" @default.
- W2024471006 abstract "This paper presents a system for automated, non-contact, and flexible prediction of surface roughness of end-milled parts through a machine vision system which is integrated with an artificial neural network (ANN). The images of milled surface grabbed by the machine vision system could be extracted using the algorithm developed in this work, in the spatial frequency domain using a two-dimensional Fourier transform to get the features of image texture (major peak frequency F 1, principal component magnitude squared value F 2, and the average gray level G a). Since F1 is the distance between the major peak and the origin, it is a robust measure to overcome the effect of lighting of the environment. The periodically occurring features such as feed marks and tool marks present in the gray-level image can be easily observed from the principal component magnitude squared value F 2. The experimental machining variables speed S, feedrate F, depth of cut D, and the response extracted image variables F 1, F 2, and G a could be used as input data, and the response surface roughness R a measured by Surfcorder SE-1100 (traditional stylus method) could be used as output data of an ANN ability to construct the relationships between input and output variables. The ANN was trained using the back-propagation algorithm developed in this work due to its superior strength in pattern recognition and reasonable speed. Using the trained ANN, the experimental result had shown that the surface roughness of milled parts predicted by machine vision system over a wide range of machining conditions could be got with a reasonable accuracy compared with those measured by traditional stylus method. Compared with the stylus method, the constructed machine vision system is a useful method for prediction of the surface roughness faster, with a lower price, and lower environment noise in manufacturing process. Experimental results have shown that the proposed machine vision system can be implemented for automated prediction of surface roughness with accuracy of 97.53%. The results are encouraging that machine vision system can be extended to many real-time industrial prediction applications." @default.
- W2024471006 created "2016-06-24" @default.
- W2024471006 creator A5056868297 @default.
- W2024471006 creator A5074879760 @default.
- W2024471006 date "2010-11-25" @default.
- W2024471006 modified "2023-09-25" @default.
- W2024471006 title "Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2D Fourier transform" @default.
- W2024471006 cites W1965857552 @default.
- W2024471006 cites W1971794986 @default.
- W2024471006 cites W1986372163 @default.
- W2024471006 cites W1996142782 @default.
- W2024471006 cites W1999029910 @default.
- W2024471006 cites W2002731587 @default.
- W2024471006 cites W2009474342 @default.
- W2024471006 cites W2028912344 @default.
- W2024471006 cites W2048167874 @default.
- W2024471006 cites W2052336655 @default.
- W2024471006 cites W2058515335 @default.
- W2024471006 cites W2068176870 @default.
- W2024471006 cites W2069835185 @default.
- W2024471006 cites W2072478339 @default.
- W2024471006 cites W2074878286 @default.
- W2024471006 cites W2082590251 @default.
- W2024471006 cites W2086255564 @default.
- W2024471006 cites W2090701946 @default.
- W2024471006 cites W2095434636 @default.
- W2024471006 cites W2103900620 @default.
- W2024471006 cites W2119388815 @default.
- W2024471006 doi "https://doi.org/10.1007/s00170-010-3018-3" @default.
- W2024471006 hasPublicationYear "2010" @default.
- W2024471006 type Work @default.
- W2024471006 sameAs 2024471006 @default.
- W2024471006 citedByCount "77" @default.
- W2024471006 countsByYear W20244710062012 @default.
- W2024471006 countsByYear W20244710062013 @default.
- W2024471006 countsByYear W20244710062014 @default.
- W2024471006 countsByYear W20244710062015 @default.
- W2024471006 countsByYear W20244710062016 @default.
- W2024471006 countsByYear W20244710062017 @default.
- W2024471006 countsByYear W20244710062018 @default.
- W2024471006 countsByYear W20244710062019 @default.
- W2024471006 countsByYear W20244710062020 @default.
- W2024471006 countsByYear W20244710062021 @default.
- W2024471006 countsByYear W20244710062022 @default.
- W2024471006 countsByYear W20244710062023 @default.
- W2024471006 crossrefType "journal-article" @default.
- W2024471006 hasAuthorship W2024471006A5056868297 @default.
- W2024471006 hasAuthorship W2024471006A5074879760 @default.
- W2024471006 hasBestOaLocation W20244710061 @default.
- W2024471006 hasConcept C102519508 @default.
- W2024471006 hasConcept C105795698 @default.
- W2024471006 hasConcept C107365816 @default.
- W2024471006 hasConcept C11413529 @default.
- W2024471006 hasConcept C127413603 @default.
- W2024471006 hasConcept C134306372 @default.
- W2024471006 hasConcept C139945424 @default.
- W2024471006 hasConcept C153180895 @default.
- W2024471006 hasConcept C154945302 @default.
- W2024471006 hasConcept C159985019 @default.
- W2024471006 hasConcept C164086593 @default.
- W2024471006 hasConcept C19118579 @default.
- W2024471006 hasConcept C192562407 @default.
- W2024471006 hasConcept C27438332 @default.
- W2024471006 hasConcept C31972630 @default.
- W2024471006 hasConcept C33923547 @default.
- W2024471006 hasConcept C41008148 @default.
- W2024471006 hasConcept C50644808 @default.
- W2024471006 hasConcept C523214423 @default.
- W2024471006 hasConcept C5339829 @default.
- W2024471006 hasConcept C71039073 @default.
- W2024471006 hasConcept C78519656 @default.
- W2024471006 hasConceptScore W2024471006C102519508 @default.
- W2024471006 hasConceptScore W2024471006C105795698 @default.
- W2024471006 hasConceptScore W2024471006C107365816 @default.
- W2024471006 hasConceptScore W2024471006C11413529 @default.
- W2024471006 hasConceptScore W2024471006C127413603 @default.
- W2024471006 hasConceptScore W2024471006C134306372 @default.
- W2024471006 hasConceptScore W2024471006C139945424 @default.
- W2024471006 hasConceptScore W2024471006C153180895 @default.
- W2024471006 hasConceptScore W2024471006C154945302 @default.
- W2024471006 hasConceptScore W2024471006C159985019 @default.
- W2024471006 hasConceptScore W2024471006C164086593 @default.
- W2024471006 hasConceptScore W2024471006C19118579 @default.
- W2024471006 hasConceptScore W2024471006C192562407 @default.
- W2024471006 hasConceptScore W2024471006C27438332 @default.
- W2024471006 hasConceptScore W2024471006C31972630 @default.
- W2024471006 hasConceptScore W2024471006C33923547 @default.
- W2024471006 hasConceptScore W2024471006C41008148 @default.
- W2024471006 hasConceptScore W2024471006C50644808 @default.
- W2024471006 hasConceptScore W2024471006C523214423 @default.
- W2024471006 hasConceptScore W2024471006C5339829 @default.
- W2024471006 hasConceptScore W2024471006C71039073 @default.
- W2024471006 hasConceptScore W2024471006C78519656 @default.
- W2024471006 hasIssue "9-12" @default.
- W2024471006 hasLocation W20244710061 @default.
- W2024471006 hasOpenAccess W2024471006 @default.
- W2024471006 hasPrimaryLocation W20244710061 @default.
- W2024471006 hasRelatedWork W1964499264 @default.