Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024486413> ?p ?o ?g. }
- W2024486413 endingPage "12567" @default.
- W2024486413 startingPage "12556" @default.
- W2024486413 abstract "In this contribution we advance and explore the thermally induced hopping (TIH) mechanism for long-range charge transport (CT) in DNA and in large-scale chemical systems. TIH occurs in donor-bridge-acceptor systems, which are characterized by off-resonance donor-bridge interactions (energy gap DeltaE > 0), involving thermally activated donor-bridge charge injection followed by intrabridge charge hopping. We observe a transition from superexchange to TIH with increasing the bridge length (i.e., the number N of the bridge constituents), which is manifested by crossing from the exponential N-dependent donor-acceptor CT rate at low N (< N(X)) to a weakly (algebraic) N-dependent CT rate at high N (>N(X)). The critical bridge size N(X) is determined by the energy gap, the nearest-neighbor electronic couplings, and the temperature. Experimental evidence for the TIH mechanism was inferred from our analysis of the chemical yields for the distal/proximal guanine (G) triplets in the (GGG)(+)TTXTT(GGG) duplex (X = G, azadine (zA), and adenine (A)) studied by Nakatani, Dohno and Saito [J. Am. Chem. Soc. 2000, 122, 5893]. The TIH sequential model, which involves hole hopping between (GGG) and X, is analyzed in terms of a sequential process in conjunction with parallel reactions of (GGG)(+) with water, and provides a scale of (free) energy gaps (relative to (GGG)(+)) of Delta = 0.21-0.24 eV for X = A, Delta = 0.10-0.14 eV for X = zA, and Delta = 0.05-0.10 eV for X = G. We further investigated the chemical yields for long-range TIH in (G)l(+)Xn(G)l (l = 1-3) duplexes, establishing the energetic constraints (i.e., the donor - bridge base (X) energy gap Delta), the bridge structural constraints (i.e., the intrabridge X-X hopping rates k(m)), and the kinetic constraints (i.e., the rate k(d) for the reaction of with water). Effective TIH is expected to prevail for Delta less than or approximately equal to 0.20 eV with a fast water reaction (k(d)/k(m) approximately 10(-3)) and for Delta < 0.30 eV with a slow water reaction (k(d)/k(m) approximately 10(-5)). We conclude that (T)n bridges (for which Delta approximately equals 0.6 eV) cannot act in TIH of holes. From an analysis based on the energetics of the electronic coupling matrix elements in G(+)(T-A)n(GGG) duplexes we conclude that the superexchange mechanism is expected to dominate for n = 1-4. For long (A)n bridges (n > or approximately equal to 4) the TIH prevails, provided that the water side reaction is slow, raising the issue of chemical control of TIH through long (A)n bridges in DNA attained by changing the solution composition." @default.
- W2024486413 created "2016-06-24" @default.
- W2024486413 creator A5018959929 @default.
- W2024486413 creator A5057806962 @default.
- W2024486413 date "2001-11-22" @default.
- W2024486413 modified "2023-10-18" @default.
- W2024486413 title "Charge Transport in DNA Via Thermally Induced Hopping" @default.
- W2024486413 cites W1505726535 @default.
- W2024486413 cites W1567090568 @default.
- W2024486413 cites W1611836266 @default.
- W2024486413 cites W1630368370 @default.
- W2024486413 cites W1658532712 @default.
- W2024486413 cites W1964371953 @default.
- W2024486413 cites W1966005088 @default.
- W2024486413 cites W1968606712 @default.
- W2024486413 cites W1969408680 @default.
- W2024486413 cites W1975532341 @default.
- W2024486413 cites W1977184994 @default.
- W2024486413 cites W1978018874 @default.
- W2024486413 cites W1981708074 @default.
- W2024486413 cites W1985247979 @default.
- W2024486413 cites W1993469717 @default.
- W2024486413 cites W2001287959 @default.
- W2024486413 cites W2006418071 @default.
- W2024486413 cites W2007008105 @default.
- W2024486413 cites W2012970572 @default.
- W2024486413 cites W2015874842 @default.
- W2024486413 cites W2016344675 @default.
- W2024486413 cites W2018433273 @default.
- W2024486413 cites W2018691282 @default.
- W2024486413 cites W2019386043 @default.
- W2024486413 cites W2025973090 @default.
- W2024486413 cites W2026150972 @default.
- W2024486413 cites W2036777770 @default.
- W2024486413 cites W2037155104 @default.
- W2024486413 cites W2039454548 @default.
- W2024486413 cites W2040843368 @default.
- W2024486413 cites W2043733885 @default.
- W2024486413 cites W2046762335 @default.
- W2024486413 cites W2048191679 @default.
- W2024486413 cites W2049106847 @default.
- W2024486413 cites W2050117690 @default.
- W2024486413 cites W2052566608 @default.
- W2024486413 cites W2058878291 @default.
- W2024486413 cites W2059046737 @default.
- W2024486413 cites W2068757719 @default.
- W2024486413 cites W2069247369 @default.
- W2024486413 cites W2069808959 @default.
- W2024486413 cites W2075570601 @default.
- W2024486413 cites W2081990222 @default.
- W2024486413 cites W2083693471 @default.
- W2024486413 cites W2085134918 @default.
- W2024486413 cites W2093041725 @default.
- W2024486413 cites W2093821031 @default.
- W2024486413 cites W2096200110 @default.
- W2024486413 cites W2100566662 @default.
- W2024486413 cites W2105302993 @default.
- W2024486413 cites W2116267801 @default.
- W2024486413 cites W2135186262 @default.
- W2024486413 cites W2149922717 @default.
- W2024486413 cites W2165337540 @default.
- W2024486413 cites W2418869138 @default.
- W2024486413 cites W2949468084 @default.
- W2024486413 cites W2951095964 @default.
- W2024486413 cites W95301518 @default.
- W2024486413 doi "https://doi.org/10.1021/ja010018p" @default.
- W2024486413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11741420" @default.
- W2024486413 hasPublicationYear "2001" @default.
- W2024486413 type Work @default.
- W2024486413 sameAs 2024486413 @default.
- W2024486413 citedByCount "176" @default.
- W2024486413 countsByYear W20244864132012 @default.
- W2024486413 countsByYear W20244864132013 @default.
- W2024486413 countsByYear W20244864132014 @default.
- W2024486413 countsByYear W20244864132015 @default.
- W2024486413 countsByYear W20244864132016 @default.
- W2024486413 countsByYear W20244864132017 @default.
- W2024486413 countsByYear W20244864132018 @default.
- W2024486413 countsByYear W20244864132019 @default.
- W2024486413 countsByYear W20244864132020 @default.
- W2024486413 countsByYear W20244864132021 @default.
- W2024486413 countsByYear W20244864132022 @default.
- W2024486413 countsByYear W20244864132023 @default.
- W2024486413 crossrefType "journal-article" @default.
- W2024486413 hasAuthorship W2024486413A5018959929 @default.
- W2024486413 hasAuthorship W2024486413A5057806962 @default.
- W2024486413 hasConcept C113196181 @default.
- W2024486413 hasConcept C121332964 @default.
- W2024486413 hasConcept C139210041 @default.
- W2024486413 hasConcept C14179194 @default.
- W2024486413 hasConcept C145148216 @default.
- W2024486413 hasConcept C147597530 @default.
- W2024486413 hasConcept C159467904 @default.
- W2024486413 hasConcept C178790620 @default.
- W2024486413 hasConcept C181966813 @default.
- W2024486413 hasConcept C184779094 @default.
- W2024486413 hasConcept C185592680 @default.
- W2024486413 hasConcept C188082385 @default.