Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024496227> ?p ?o ?g. }
- W2024496227 endingPage "250" @default.
- W2024496227 startingPage "201" @default.
- W2024496227 abstract "It has been proved by the principle of anti-integrable limit (renamed here anti-continuous limit) and the implicit function theorem that, under rather weak hypotheses, there exist spatially localized and time periodic solutions (“breathers”) in arrays of nonlinear coupled classical oscillators provided the coupling is not too strong. The models can be translationally invariant or not and be of any dimension. There are also time periodic solutions corresponding to arbitrary distributions on the lattice of such solutions (“multibreathers”). The whole set of these solutions can be labeled by a discrete coding sequence. The condition that the frequency of the breather or multibreather solution has no harmonics in the phonon spectrum can be discarded for a large subset of spatially extended time periodic solutions called “phonobreather” which correspond to special codes (which can be also spatially chaotic) and where no oscillator is at rest. These results extend almost without change to models with coupled rotors. The existence of “rotobreathers” which are exact solutions consisting of a single rotor rotating while the other rotors oscillate, is proved. There are also multirotobreather solutions and “phono-rotobreathers”, etc. It is also shown that the phase of the single breathers constituting a multibreather (or multirotobreather) solution can be submitted to a “phase torsion”. These new dynamical structures carry a nonzero energy flow. In models with two dimensions and more, the phase torsion of multibreather solutions can generate new dynamical solutions with vortices in the energy flow. The dynamics of a quantum electron coupled to a classical lattice is also studied within the same approach from the anti-continuous limit. The existence of two kinds of “polarobreathers”, which are spatially exponentially localized dynamical solutions, is proved for a small enough electronic transfer integral. The polarobreathers of the first kind include the standard static polaron. The lattice configuration is static (time independent) when the electron is in an excited state (i.e. the electronic oscillator oscillates periodically). They can be spatially chaotic. A polarobreather of the second kind corresponds to a localized periodic lattice oscillation associated with a localized quasiperiodic electronic oscillation. The most simple of these solutions are those for which both the lattice oscillation and the electron wave function are mostly concentrated close to the same single site. The standard Floquet analysis of the linear stability of the breather and multibreather solutions is shown to be related with the band spectrum property of the Newton operator involved in the implicit function theorem. The Krein theory of bifurcations is reinterpreted from this point of view. The linear stability of the single breather (and rotobreather) solutions is then proved at least at small enough coupling. Finally, it is shown that in the quantum version of translationally invariant classical models (where there cannot exist in principle any strictly localized excitation) there are narrow bands of excitations consisting of bound states of many bosons which are the quantum counterpart of the classical breathers. The bandwidth of these excitations goes exponentially to zero with the number of bound phonons. This theory provides simultaneously existence theorems and a new powerful and accurate numerical method for calculating practically any of the solutions which has been formally predicted to exist. These numerical applications are currently written elsewhere." @default.
- W2024496227 created "2016-06-24" @default.
- W2024496227 creator A5048349185 @default.
- W2024496227 date "1997-04-01" @default.
- W2024496227 modified "2023-09-30" @default.
- W2024496227 title "Breathers in nonlinear lattices: Existence, linear stability and quantization" @default.
- W2024496227 cites W1964131158 @default.
- W2024496227 cites W1966466948 @default.
- W2024496227 cites W1967232532 @default.
- W2024496227 cites W1971457534 @default.
- W2024496227 cites W1980774708 @default.
- W2024496227 cites W1982341221 @default.
- W2024496227 cites W1982843064 @default.
- W2024496227 cites W1983478925 @default.
- W2024496227 cites W1988078846 @default.
- W2024496227 cites W1989057814 @default.
- W2024496227 cites W1993094548 @default.
- W2024496227 cites W1996839785 @default.
- W2024496227 cites W1999078596 @default.
- W2024496227 cites W2000472903 @default.
- W2024496227 cites W2002096671 @default.
- W2024496227 cites W2007678244 @default.
- W2024496227 cites W2011134156 @default.
- W2024496227 cites W2013458836 @default.
- W2024496227 cites W2016450992 @default.
- W2024496227 cites W2034261384 @default.
- W2024496227 cites W2043790358 @default.
- W2024496227 cites W2043992273 @default.
- W2024496227 cites W2048692205 @default.
- W2024496227 cites W2051633204 @default.
- W2024496227 cites W2055153615 @default.
- W2024496227 cites W2055188941 @default.
- W2024496227 cites W2065148499 @default.
- W2024496227 cites W2065423446 @default.
- W2024496227 cites W2067420604 @default.
- W2024496227 cites W2069226173 @default.
- W2024496227 cites W2074944253 @default.
- W2024496227 cites W2081073150 @default.
- W2024496227 cites W2090473684 @default.
- W2024496227 cites W2095025528 @default.
- W2024496227 cites W2108210777 @default.
- W2024496227 cites W2124510464 @default.
- W2024496227 cites W2144353925 @default.
- W2024496227 cites W2276778732 @default.
- W2024496227 doi "https://doi.org/10.1016/s0167-2789(96)00261-8" @default.
- W2024496227 hasPublicationYear "1997" @default.
- W2024496227 type Work @default.
- W2024496227 sameAs 2024496227 @default.
- W2024496227 citedByCount "702" @default.
- W2024496227 countsByYear W20244962272012 @default.
- W2024496227 countsByYear W20244962272013 @default.
- W2024496227 countsByYear W20244962272014 @default.
- W2024496227 countsByYear W20244962272015 @default.
- W2024496227 countsByYear W20244962272016 @default.
- W2024496227 countsByYear W20244962272017 @default.
- W2024496227 countsByYear W20244962272018 @default.
- W2024496227 countsByYear W20244962272019 @default.
- W2024496227 countsByYear W20244962272020 @default.
- W2024496227 countsByYear W20244962272021 @default.
- W2024496227 countsByYear W20244962272022 @default.
- W2024496227 countsByYear W20244962272023 @default.
- W2024496227 crossrefType "journal-article" @default.
- W2024496227 hasAuthorship W2024496227A5048349185 @default.
- W2024496227 hasConcept C121332964 @default.
- W2024496227 hasConcept C134306372 @default.
- W2024496227 hasConcept C158622935 @default.
- W2024496227 hasConcept C190470478 @default.
- W2024496227 hasConcept C200741047 @default.
- W2024496227 hasConcept C24890656 @default.
- W2024496227 hasConcept C2781204021 @default.
- W2024496227 hasConcept C33923547 @default.
- W2024496227 hasConcept C40934718 @default.
- W2024496227 hasConcept C62520636 @default.
- W2024496227 hasConcept C74455749 @default.
- W2024496227 hasConcept C74650414 @default.
- W2024496227 hasConceptScore W2024496227C121332964 @default.
- W2024496227 hasConceptScore W2024496227C134306372 @default.
- W2024496227 hasConceptScore W2024496227C158622935 @default.
- W2024496227 hasConceptScore W2024496227C190470478 @default.
- W2024496227 hasConceptScore W2024496227C200741047 @default.
- W2024496227 hasConceptScore W2024496227C24890656 @default.
- W2024496227 hasConceptScore W2024496227C2781204021 @default.
- W2024496227 hasConceptScore W2024496227C33923547 @default.
- W2024496227 hasConceptScore W2024496227C40934718 @default.
- W2024496227 hasConceptScore W2024496227C62520636 @default.
- W2024496227 hasConceptScore W2024496227C74455749 @default.
- W2024496227 hasConceptScore W2024496227C74650414 @default.
- W2024496227 hasIssue "1-4" @default.
- W2024496227 hasLocation W20244962271 @default.
- W2024496227 hasOpenAccess W2024496227 @default.
- W2024496227 hasPrimaryLocation W20244962271 @default.
- W2024496227 hasRelatedWork W1977012935 @default.
- W2024496227 hasRelatedWork W1982766653 @default.
- W2024496227 hasRelatedWork W2015116517 @default.
- W2024496227 hasRelatedWork W2023581527 @default.
- W2024496227 hasRelatedWork W2027770113 @default.
- W2024496227 hasRelatedWork W2043166287 @default.
- W2024496227 hasRelatedWork W2102906891 @default.