Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024549916> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2024549916 abstract "In the study of differential equations with singly-periodic coefficients, a fundamental result is Floquet's theorem (2; §15.7) relating to the existence of pseudoperiodic solutions, i.e. solutions which are multiplied by a constant when the argument is increased by a period. When one seeks to extend this theory to the case of equations with doubly-periodic coefficients some difficulties arise, and the extension has been made only in two very special cases (2; §§15.6, 15.63). When expressed in algebraic form, a singly-periodic equation is distinguished by having only two finite singularities, while a doubly-periodic equation has three. This fact suggested an investigation of such algebraic equations which has proved to be interesting for its own sake and which constitutes the present paper. The basic concept is that of a solution which is multiplicative for a given path in a complex plane, i.e. a solution which, when continued analytically along a closed path, is merely multiplied by a constant. Theorem 1 (which is not new) shows that there is at least one multiplicative solution for any path: Theorems 2-5 give results on multiplicative solutions for combinations of two paths, in which the key concept is that of the link parameter between such paths; Floquet's theorem emerges as a corollary of this work. Theorems 6-7 consider a combination of three paths and relations between the link parameters for the three pairs of paths; the applicability of this to doubly-periodic equations is indicated briefly and will be developed in a subsequent paper. 1. Terminology and notation" @default.
- W2024549916 created "2016-06-24" @default.
- W2024549916 creator A5000281857 @default.
- W2024549916 creator A5043139314 @default.
- W2024549916 date "1968-01-01" @default.
- W2024549916 modified "2023-09-27" @default.
- W2024549916 title "Multiplicative Solutions of Linear Differential Equations" @default.
- W2024549916 cites W2312410307 @default.
- W2024549916 cites W2994685737 @default.
- W2024549916 doi "https://doi.org/10.1112/jlms/s1-43.1.263" @default.
- W2024549916 hasPublicationYear "1968" @default.
- W2024549916 type Work @default.
- W2024549916 sameAs 2024549916 @default.
- W2024549916 citedByCount "4" @default.
- W2024549916 crossrefType "journal-article" @default.
- W2024549916 hasAuthorship W2024549916A5000281857 @default.
- W2024549916 hasAuthorship W2024549916A5043139314 @default.
- W2024549916 hasConcept C110342517 @default.
- W2024549916 hasConcept C121332964 @default.
- W2024549916 hasConcept C12843 @default.
- W2024549916 hasConcept C134306372 @default.
- W2024549916 hasConcept C158622935 @default.
- W2024549916 hasConcept C199360897 @default.
- W2024549916 hasConcept C202444582 @default.
- W2024549916 hasConcept C2777027219 @default.
- W2024549916 hasConcept C2777735758 @default.
- W2024549916 hasConcept C2780012671 @default.
- W2024549916 hasConcept C33923547 @default.
- W2024549916 hasConcept C41008148 @default.
- W2024549916 hasConcept C42747912 @default.
- W2024549916 hasConcept C55649039 @default.
- W2024549916 hasConcept C62520636 @default.
- W2024549916 hasConcept C78045399 @default.
- W2024549916 hasConcept C9376300 @default.
- W2024549916 hasConceptScore W2024549916C110342517 @default.
- W2024549916 hasConceptScore W2024549916C121332964 @default.
- W2024549916 hasConceptScore W2024549916C12843 @default.
- W2024549916 hasConceptScore W2024549916C134306372 @default.
- W2024549916 hasConceptScore W2024549916C158622935 @default.
- W2024549916 hasConceptScore W2024549916C199360897 @default.
- W2024549916 hasConceptScore W2024549916C202444582 @default.
- W2024549916 hasConceptScore W2024549916C2777027219 @default.
- W2024549916 hasConceptScore W2024549916C2777735758 @default.
- W2024549916 hasConceptScore W2024549916C2780012671 @default.
- W2024549916 hasConceptScore W2024549916C33923547 @default.
- W2024549916 hasConceptScore W2024549916C41008148 @default.
- W2024549916 hasConceptScore W2024549916C42747912 @default.
- W2024549916 hasConceptScore W2024549916C55649039 @default.
- W2024549916 hasConceptScore W2024549916C62520636 @default.
- W2024549916 hasConceptScore W2024549916C78045399 @default.
- W2024549916 hasConceptScore W2024549916C9376300 @default.
- W2024549916 hasLocation W20245499161 @default.
- W2024549916 hasOpenAccess W2024549916 @default.
- W2024549916 hasPrimaryLocation W20245499161 @default.
- W2024549916 hasRelatedWork W2025644189 @default.
- W2024549916 hasRelatedWork W2030266977 @default.
- W2024549916 hasRelatedWork W2035621682 @default.
- W2024549916 hasRelatedWork W204284478 @default.
- W2024549916 hasRelatedWork W2045839217 @default.
- W2024549916 hasRelatedWork W2046710216 @default.
- W2024549916 hasRelatedWork W2050979195 @default.
- W2024549916 hasRelatedWork W2069596209 @default.
- W2024549916 hasRelatedWork W2126701748 @default.
- W2024549916 hasRelatedWork W2387269611 @default.
- W2024549916 hasRelatedWork W2547233304 @default.
- W2024549916 hasRelatedWork W2941737405 @default.
- W2024549916 hasRelatedWork W3009743870 @default.
- W2024549916 hasRelatedWork W3021333681 @default.
- W2024549916 hasRelatedWork W3023756577 @default.
- W2024549916 hasRelatedWork W3045727733 @default.
- W2024549916 hasRelatedWork W3123339605 @default.
- W2024549916 hasRelatedWork W3143972093 @default.
- W2024549916 hasRelatedWork W583597215 @default.
- W2024549916 hasRelatedWork W3147751858 @default.
- W2024549916 isParatext "false" @default.
- W2024549916 isRetracted "false" @default.
- W2024549916 magId "2024549916" @default.
- W2024549916 workType "article" @default.