Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024561805> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2024561805 endingPage "92" @default.
- W2024561805 startingPage "84" @default.
- W2024561805 abstract "Methods for “cleaning up” (or recognizing) states of a neural network are crucial for the functioning of many neural cognitive models. This process takes a noisy approximation of a state and recovers the original information. As a particular example, we consider the cleanup required for the use of Vector Symbolic Architectures, which provide a method for manipulating symbols using a fixed-length vector representation. To recognize the result of these manipulations, a mechanism for cleaning up the resulting noisy representation is needed, as this noise increases with the number of symbols being combined. While these symbolic manipulations have previously been modelled with biologically plausible neurons, this paper presents the first spiking neuron model of the cleanup process. We demonstrate that it approaches ideal performance and that the neural requirements scale linearly with the number of distinct symbols in the system. While this result is relevant for any biological model requiring cleanup, it is crucial for VSAs, as it completes the set of mechanisms needed to provide a full neural implementation of symbolic reasoning." @default.
- W2024561805 created "2016-06-24" @default.
- W2024561805 creator A5034956679 @default.
- W2024561805 creator A5055630059 @default.
- W2024561805 creator A5069590039 @default.
- W2024561805 date "2011-06-01" @default.
- W2024561805 modified "2023-09-29" @default.
- W2024561805 title "A biologically realistic cleanup memory: Autoassociation in spiking neurons" @default.
- W2024561805 cites W1498436455 @default.
- W2024561805 cites W1978385102 @default.
- W2024561805 cites W1986787497 @default.
- W2024561805 cites W1996334481 @default.
- W2024561805 cites W2040739363 @default.
- W2024561805 cites W2171516521 @default.
- W2024561805 doi "https://doi.org/10.1016/j.cogsys.2010.06.006" @default.
- W2024561805 hasPublicationYear "2011" @default.
- W2024561805 type Work @default.
- W2024561805 sameAs 2024561805 @default.
- W2024561805 citedByCount "42" @default.
- W2024561805 countsByYear W20245618052013 @default.
- W2024561805 countsByYear W20245618052014 @default.
- W2024561805 countsByYear W20245618052015 @default.
- W2024561805 countsByYear W20245618052016 @default.
- W2024561805 countsByYear W20245618052017 @default.
- W2024561805 countsByYear W20245618052018 @default.
- W2024561805 countsByYear W20245618052019 @default.
- W2024561805 countsByYear W20245618052020 @default.
- W2024561805 countsByYear W20245618052021 @default.
- W2024561805 countsByYear W20245618052022 @default.
- W2024561805 countsByYear W20245618052023 @default.
- W2024561805 crossrefType "journal-article" @default.
- W2024561805 hasAuthorship W2024561805A5034956679 @default.
- W2024561805 hasAuthorship W2024561805A5055630059 @default.
- W2024561805 hasAuthorship W2024561805A5069590039 @default.
- W2024561805 hasConcept C111919701 @default.
- W2024561805 hasConcept C115961682 @default.
- W2024561805 hasConcept C154945302 @default.
- W2024561805 hasConcept C177264268 @default.
- W2024561805 hasConcept C17744445 @default.
- W2024561805 hasConcept C199360897 @default.
- W2024561805 hasConcept C199539241 @default.
- W2024561805 hasConcept C2776359362 @default.
- W2024561805 hasConcept C41008148 @default.
- W2024561805 hasConcept C50644808 @default.
- W2024561805 hasConcept C80444323 @default.
- W2024561805 hasConcept C94625758 @default.
- W2024561805 hasConcept C98045186 @default.
- W2024561805 hasConcept C99498987 @default.
- W2024561805 hasConceptScore W2024561805C111919701 @default.
- W2024561805 hasConceptScore W2024561805C115961682 @default.
- W2024561805 hasConceptScore W2024561805C154945302 @default.
- W2024561805 hasConceptScore W2024561805C177264268 @default.
- W2024561805 hasConceptScore W2024561805C17744445 @default.
- W2024561805 hasConceptScore W2024561805C199360897 @default.
- W2024561805 hasConceptScore W2024561805C199539241 @default.
- W2024561805 hasConceptScore W2024561805C2776359362 @default.
- W2024561805 hasConceptScore W2024561805C41008148 @default.
- W2024561805 hasConceptScore W2024561805C50644808 @default.
- W2024561805 hasConceptScore W2024561805C80444323 @default.
- W2024561805 hasConceptScore W2024561805C94625758 @default.
- W2024561805 hasConceptScore W2024561805C98045186 @default.
- W2024561805 hasConceptScore W2024561805C99498987 @default.
- W2024561805 hasIssue "2" @default.
- W2024561805 hasLocation W20245618051 @default.
- W2024561805 hasOpenAccess W2024561805 @default.
- W2024561805 hasPrimaryLocation W20245618051 @default.
- W2024561805 hasRelatedWork W1997653553 @default.
- W2024561805 hasRelatedWork W1999953756 @default.
- W2024561805 hasRelatedWork W2043667126 @default.
- W2024561805 hasRelatedWork W2068266569 @default.
- W2024561805 hasRelatedWork W2085580665 @default.
- W2024561805 hasRelatedWork W2166829200 @default.
- W2024561805 hasRelatedWork W2355215981 @default.
- W2024561805 hasRelatedWork W2386387936 @default.
- W2024561805 hasRelatedWork W1629725936 @default.
- W2024561805 hasRelatedWork W2012842278 @default.
- W2024561805 hasVolume "12" @default.
- W2024561805 isParatext "false" @default.
- W2024561805 isRetracted "false" @default.
- W2024561805 magId "2024561805" @default.
- W2024561805 workType "article" @default.