Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024573964> ?p ?o ?g. }
- W2024573964 endingPage "29" @default.
- W2024573964 startingPage "17" @default.
- W2024573964 abstract "One major challenge in modeling groundwater flow within heterogeneous geological media is that of modeling arbitrarily oriented or intersected boundaries and inner material interfaces. The Numerical Manifold Method (NMM) has recently emerged as a promising method for such modeling, in its ability to handle boundaries, its flexibility in constructing physical cover functions (continuous or with gradient jump), its meshing efficiency with a fixed mathematical mesh (covers), its convenience for enhancing approximation precision, and its integration precision, achieved by simplex integration. In this paper, we report on developing and comparing two new approaches for boundary constraints using the NMM, namely a continuous approach with jump functions and a discontinuous approach with Lagrange multipliers. In the discontinuous Lagrange multiplier method (LMM), the material interfaces are regarded as discontinuities which divide mathematical covers into different physical covers. We define and derive stringent forms of Lagrange multipliers to link the divided physical covers, thus satisfying the continuity requirement of the refraction law. In the continuous Jump Function Method (JFM), the material interfaces are regarded as inner interfaces contained within physical covers. We briefly define jump terms to represent the discontinuity of the head gradient across an interface to satisfy the refraction law. We then make a theoretical comparison between the two approaches in terms of global degrees of freedom, treatment of multiple material interfaces, treatment of small area, treatment of moving interfaces, the feasibility of coupling with mechanical analysis and applicability to other numerical methods. The newly derived boundary-constraint approaches are coded into a NMM model for groundwater flow analysis, and tested for precision and efficiency on different simulation examples. We first test the LMM for a Dirichlet boundary and then test both LMM and JFM for an idealized heterogeneous model, comparing the numerical results with analytical solutions. Then we test both approaches for a heterogeneous model and compare the results of hydraulic head and specific discharge. We show that both approaches are suitable for modeling material boundaries, considering high accuracy for the boundary constraints, the capability to deal with arbitrarily oriented or complexly intersected boundaries, and their efficiency using a fixed mathematical mesh." @default.
- W2024573964 created "2016-06-24" @default.
- W2024573964 creator A5034481707 @default.
- W2024573964 creator A5047675317 @default.
- W2024573964 creator A5074533724 @default.
- W2024573964 date "2015-06-01" @default.
- W2024573964 modified "2023-09-27" @default.
- W2024573964 title "On continuous and discontinuous approaches for modeling groundwater flow in heterogeneous media using the Numerical Manifold Method: Model development and comparison" @default.
- W2024573964 cites W1963808234 @default.
- W2024573964 cites W1968374849 @default.
- W2024573964 cites W1976708721 @default.
- W2024573964 cites W1981084564 @default.
- W2024573964 cites W1985216071 @default.
- W2024573964 cites W1986174760 @default.
- W2024573964 cites W1986308840 @default.
- W2024573964 cites W1994875376 @default.
- W2024573964 cites W1998745245 @default.
- W2024573964 cites W2005252087 @default.
- W2024573964 cites W2006213599 @default.
- W2024573964 cites W2008365488 @default.
- W2024573964 cites W2009577469 @default.
- W2024573964 cites W2010020165 @default.
- W2024573964 cites W2012938047 @default.
- W2024573964 cites W2018922867 @default.
- W2024573964 cites W2038460701 @default.
- W2024573964 cites W2042551080 @default.
- W2024573964 cites W2043533888 @default.
- W2024573964 cites W2044734051 @default.
- W2024573964 cites W2049738452 @default.
- W2024573964 cites W2051305457 @default.
- W2024573964 cites W2067461001 @default.
- W2024573964 cites W2075362265 @default.
- W2024573964 cites W2075771875 @default.
- W2024573964 cites W2079263908 @default.
- W2024573964 cites W2079423956 @default.
- W2024573964 cites W2089833430 @default.
- W2024573964 cites W2101063672 @default.
- W2024573964 cites W2120270635 @default.
- W2024573964 cites W2121092123 @default.
- W2024573964 cites W2123573122 @default.
- W2024573964 cites W2130350269 @default.
- W2024573964 cites W2156259814 @default.
- W2024573964 cites W2157212757 @default.
- W2024573964 cites W4233175780 @default.
- W2024573964 doi "https://doi.org/10.1016/j.advwatres.2015.03.004" @default.
- W2024573964 hasPublicationYear "2015" @default.
- W2024573964 type Work @default.
- W2024573964 sameAs 2024573964 @default.
- W2024573964 citedByCount "20" @default.
- W2024573964 countsByYear W20245739642016 @default.
- W2024573964 countsByYear W20245739642017 @default.
- W2024573964 countsByYear W20245739642018 @default.
- W2024573964 countsByYear W20245739642019 @default.
- W2024573964 countsByYear W20245739642020 @default.
- W2024573964 countsByYear W20245739642021 @default.
- W2024573964 countsByYear W20245739642022 @default.
- W2024573964 countsByYear W20245739642023 @default.
- W2024573964 crossrefType "journal-article" @default.
- W2024573964 hasAuthorship W2024573964A5034481707 @default.
- W2024573964 hasAuthorship W2024573964A5047675317 @default.
- W2024573964 hasAuthorship W2024573964A5074533724 @default.
- W2024573964 hasBestOaLocation W20245739641 @default.
- W2024573964 hasConcept C121332964 @default.
- W2024573964 hasConcept C126255220 @default.
- W2024573964 hasConcept C134306372 @default.
- W2024573964 hasConcept C15627037 @default.
- W2024573964 hasConcept C182310444 @default.
- W2024573964 hasConcept C2777042112 @default.
- W2024573964 hasConcept C2780695682 @default.
- W2024573964 hasConcept C28826006 @default.
- W2024573964 hasConcept C33923547 @default.
- W2024573964 hasConcept C41008148 @default.
- W2024573964 hasConcept C62354387 @default.
- W2024573964 hasConcept C62520636 @default.
- W2024573964 hasConcept C73684929 @default.
- W2024573964 hasConceptScore W2024573964C121332964 @default.
- W2024573964 hasConceptScore W2024573964C126255220 @default.
- W2024573964 hasConceptScore W2024573964C134306372 @default.
- W2024573964 hasConceptScore W2024573964C15627037 @default.
- W2024573964 hasConceptScore W2024573964C182310444 @default.
- W2024573964 hasConceptScore W2024573964C2777042112 @default.
- W2024573964 hasConceptScore W2024573964C2780695682 @default.
- W2024573964 hasConceptScore W2024573964C28826006 @default.
- W2024573964 hasConceptScore W2024573964C33923547 @default.
- W2024573964 hasConceptScore W2024573964C41008148 @default.
- W2024573964 hasConceptScore W2024573964C62354387 @default.
- W2024573964 hasConceptScore W2024573964C62520636 @default.
- W2024573964 hasConceptScore W2024573964C73684929 @default.
- W2024573964 hasFunder F4320321001 @default.
- W2024573964 hasFunder F4320321106 @default.
- W2024573964 hasFunder F4320322725 @default.
- W2024573964 hasFunder F4320338292 @default.
- W2024573964 hasLocation W20245739641 @default.
- W2024573964 hasLocation W20245739642 @default.
- W2024573964 hasOpenAccess W2024573964 @default.
- W2024573964 hasPrimaryLocation W20245739641 @default.
- W2024573964 hasRelatedWork W17367974 @default.
- W2024573964 hasRelatedWork W1989549950 @default.