Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024579722> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2024579722 abstract "In this paper we get an estimate of Favard length of an arbitrary neighbourhood of an arbitrary self-similar Cantor set. Consider $L$ closed disjoint discs of radius $1/L$ inside the unit disc. By using linear maps of smaller disc onto the unit disc we can generate a self-similar Cantor set $G$. Then $G=bigcap_nG_n$. One may then ask the rate at which the Favard length - the average over all directions of the length of the orthogonal projection onto a line in that direction - of these sets $G_n$ decays to zero as a function of $n$. The quantitative results for the Favard length problem were obtained by Peres-Solomyak and Tao; in the latter paper a general way of making a quantitative statement from the Besicovitch theorem is considered. But being rather general, this method does not give a good estimate for self-similar structures such as $G_n$. Indeed, vastly improved estimates have been proven in these cases: in the paper of Nazarov-Peres-Volberg, it was shown that for 1/4 corner Cantor set one has $p 0$. In the present work we give an estimate that works for {it any} Besicovitch set which is self-similar. However estimate is worse than the power one. The power estimate still appears to be related to a certain regularity property of zeros of a corresponding linear combination of exponents (we call this property {it analytic tiling})." @default.
- W2024579722 created "2016-06-24" @default.
- W2024579722 creator A5000978923 @default.
- W2024579722 creator A5051960288 @default.
- W2024579722 date "2009-12-27" @default.
- W2024579722 modified "2023-09-27" @default.
- W2024579722 title "Buffon's needle landing near Besicovitch irregular self-similar sets" @default.
- W2024579722 cites W1629768768 @default.
- W2024579722 cites W1995554879 @default.
- W2024579722 cites W2029275558 @default.
- W2024579722 cites W2066844576 @default.
- W2024579722 cites W2133966203 @default.
- W2024579722 cites W2159258685 @default.
- W2024579722 cites W2950321433 @default.
- W2024579722 hasPublicationYear "2009" @default.
- W2024579722 type Work @default.
- W2024579722 sameAs 2024579722 @default.
- W2024579722 citedByCount "0" @default.
- W2024579722 crossrefType "posted-content" @default.
- W2024579722 hasAuthorship W2024579722A5000978923 @default.
- W2024579722 hasAuthorship W2024579722A5051960288 @default.
- W2024579722 hasConcept C11413529 @default.
- W2024579722 hasConcept C114614502 @default.
- W2024579722 hasConcept C118615104 @default.
- W2024579722 hasConcept C134306372 @default.
- W2024579722 hasConcept C14036430 @default.
- W2024579722 hasConcept C177264268 @default.
- W2024579722 hasConcept C199360897 @default.
- W2024579722 hasConcept C33923547 @default.
- W2024579722 hasConcept C36605576 @default.
- W2024579722 hasConcept C41008148 @default.
- W2024579722 hasConcept C45340560 @default.
- W2024579722 hasConcept C57493831 @default.
- W2024579722 hasConcept C78458016 @default.
- W2024579722 hasConcept C86803240 @default.
- W2024579722 hasConceptScore W2024579722C11413529 @default.
- W2024579722 hasConceptScore W2024579722C114614502 @default.
- W2024579722 hasConceptScore W2024579722C118615104 @default.
- W2024579722 hasConceptScore W2024579722C134306372 @default.
- W2024579722 hasConceptScore W2024579722C14036430 @default.
- W2024579722 hasConceptScore W2024579722C177264268 @default.
- W2024579722 hasConceptScore W2024579722C199360897 @default.
- W2024579722 hasConceptScore W2024579722C33923547 @default.
- W2024579722 hasConceptScore W2024579722C36605576 @default.
- W2024579722 hasConceptScore W2024579722C41008148 @default.
- W2024579722 hasConceptScore W2024579722C45340560 @default.
- W2024579722 hasConceptScore W2024579722C57493831 @default.
- W2024579722 hasConceptScore W2024579722C78458016 @default.
- W2024579722 hasConceptScore W2024579722C86803240 @default.
- W2024579722 hasLocation W20245797221 @default.
- W2024579722 hasOpenAccess W2024579722 @default.
- W2024579722 hasPrimaryLocation W20245797221 @default.
- W2024579722 hasRelatedWork W191060044 @default.
- W2024579722 hasRelatedWork W1972276268 @default.
- W2024579722 hasRelatedWork W1996422442 @default.
- W2024579722 hasRelatedWork W2011423676 @default.
- W2024579722 hasRelatedWork W2030012630 @default.
- W2024579722 hasRelatedWork W2052705968 @default.
- W2024579722 hasRelatedWork W2131731543 @default.
- W2024579722 hasRelatedWork W2153492905 @default.
- W2024579722 hasRelatedWork W2241120543 @default.
- W2024579722 hasRelatedWork W2243390481 @default.
- W2024579722 hasRelatedWork W2276604747 @default.
- W2024579722 hasRelatedWork W2756842687 @default.
- W2024579722 hasRelatedWork W2898071494 @default.
- W2024579722 hasRelatedWork W2963750764 @default.
- W2024579722 hasRelatedWork W2963756276 @default.
- W2024579722 hasRelatedWork W2991150450 @default.
- W2024579722 hasRelatedWork W3093783484 @default.
- W2024579722 hasRelatedWork W3151040414 @default.
- W2024579722 hasRelatedWork W3187669029 @default.
- W2024579722 hasRelatedWork W3190009073 @default.
- W2024579722 isParatext "false" @default.
- W2024579722 isRetracted "false" @default.
- W2024579722 magId "2024579722" @default.
- W2024579722 workType "article" @default.