Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024585152> ?p ?o ?g. }
- W2024585152 endingPage "6066" @default.
- W2024585152 startingPage "6054" @default.
- W2024585152 abstract "Many algorithms have been developed for the remote estimation of vegetation fraction in terms of combinations of spectral bands, derivatives of reflectance spectra, neural networks, inversion of radiative transfer models, and several multispectral statistical approaches. The most widespread type of algorithm used is the mathematical combination of visible and near-infrared reflectance, in the form of spectral vegetation indices. The general objective of this study is to evaluate different vegetation indices for the remote estimation of the fractional vegetation cover in two crop types, maize and soybean, with contrasting canopy architectures and leaf structures. The noise equivalent of vegetation indices was used as an indicator of sensitivity and accuracy of vegetation fraction estimation. Among the indices tested, the enhanced vegetation index EVI2, wide dynamic range vegetation index WDRVI, green-and red-edge normalized difference vegetation index NDVI were found to be accurate in estimating vegetation fraction. These results were obtained using reflectance data acquired with close-range sensors i.e. spectroradiometers mounted 6 m above the top of canopy. WDRVI was able to estimate vegetation fraction in both crops with no re-parameterization with RMSE below 6% and mean normalized bias below 2%." @default.
- W2024585152 created "2016-06-24" @default.
- W2024585152 creator A5058297654 @default.
- W2024585152 date "2013-04-29" @default.
- W2024585152 modified "2023-09-23" @default.
- W2024585152 title "Remote estimation of crop fractional vegetation cover: the use of noise equivalent as an indicator of performance of vegetation indices" @default.
- W2024585152 cites W1269899982 @default.
- W2024585152 cites W1966035399 @default.
- W2024585152 cites W1966798775 @default.
- W2024585152 cites W1971379731 @default.
- W2024585152 cites W1979636379 @default.
- W2024585152 cites W1989987606 @default.
- W2024585152 cites W2011010318 @default.
- W2024585152 cites W2012645261 @default.
- W2024585152 cites W2013648735 @default.
- W2024585152 cites W2015379369 @default.
- W2024585152 cites W2023350074 @default.
- W2024585152 cites W2034187138 @default.
- W2024585152 cites W2036706101 @default.
- W2024585152 cites W2039604550 @default.
- W2024585152 cites W2051725342 @default.
- W2024585152 cites W206024 @default.
- W2024585152 cites W2062902149 @default.
- W2024585152 cites W2063623478 @default.
- W2024585152 cites W2064360928 @default.
- W2024585152 cites W2064552842 @default.
- W2024585152 cites W2072633546 @default.
- W2024585152 cites W2085880802 @default.
- W2024585152 cites W2092722122 @default.
- W2024585152 cites W2094420085 @default.
- W2024585152 cites W2094677081 @default.
- W2024585152 cites W2110456190 @default.
- W2024585152 cites W2113410727 @default.
- W2024585152 cites W2118791227 @default.
- W2024585152 cites W2124459984 @default.
- W2024585152 cites W2124610790 @default.
- W2024585152 cites W2125397877 @default.
- W2024585152 cites W2128103293 @default.
- W2024585152 cites W2128866545 @default.
- W2024585152 cites W2143494625 @default.
- W2024585152 cites W2144559754 @default.
- W2024585152 cites W2146754899 @default.
- W2024585152 cites W2149769863 @default.
- W2024585152 cites W2150140969 @default.
- W2024585152 cites W2166516660 @default.
- W2024585152 cites W2167869331 @default.
- W2024585152 cites W2475737318 @default.
- W2024585152 cites W4249940406 @default.
- W2024585152 doi "https://doi.org/10.1080/01431161.2013.793868" @default.
- W2024585152 hasPublicationYear "2013" @default.
- W2024585152 type Work @default.
- W2024585152 sameAs 2024585152 @default.
- W2024585152 citedByCount "61" @default.
- W2024585152 countsByYear W20245851522013 @default.
- W2024585152 countsByYear W20245851522014 @default.
- W2024585152 countsByYear W20245851522015 @default.
- W2024585152 countsByYear W20245851522016 @default.
- W2024585152 countsByYear W20245851522017 @default.
- W2024585152 countsByYear W20245851522018 @default.
- W2024585152 countsByYear W20245851522019 @default.
- W2024585152 countsByYear W20245851522020 @default.
- W2024585152 countsByYear W20245851522021 @default.
- W2024585152 countsByYear W20245851522022 @default.
- W2024585152 countsByYear W20245851522023 @default.
- W2024585152 crossrefType "journal-article" @default.
- W2024585152 hasAuthorship W2024585152A5058297654 @default.
- W2024585152 hasConcept C115961682 @default.
- W2024585152 hasConcept C127313418 @default.
- W2024585152 hasConcept C127413603 @default.
- W2024585152 hasConcept C137580998 @default.
- W2024585152 hasConcept C142724271 @default.
- W2024585152 hasConcept C1549246 @default.
- W2024585152 hasConcept C154945302 @default.
- W2024585152 hasConcept C162324750 @default.
- W2024585152 hasConcept C187320778 @default.
- W2024585152 hasConcept C187736073 @default.
- W2024585152 hasConcept C18903297 @default.
- W2024585152 hasConcept C205649164 @default.
- W2024585152 hasConcept C25989453 @default.
- W2024585152 hasConcept C2776133958 @default.
- W2024585152 hasConcept C2780376076 @default.
- W2024585152 hasConcept C2780428219 @default.
- W2024585152 hasConcept C2983732647 @default.
- W2024585152 hasConcept C39432304 @default.
- W2024585152 hasConcept C41008148 @default.
- W2024585152 hasConcept C4792198 @default.
- W2024585152 hasConcept C62649853 @default.
- W2024585152 hasConcept C71924100 @default.
- W2024585152 hasConcept C76886044 @default.
- W2024585152 hasConcept C78519656 @default.
- W2024585152 hasConcept C78869512 @default.
- W2024585152 hasConcept C86803240 @default.
- W2024585152 hasConcept C96250715 @default.
- W2024585152 hasConcept C97137747 @default.
- W2024585152 hasConcept C99498987 @default.
- W2024585152 hasConceptScore W2024585152C115961682 @default.
- W2024585152 hasConceptScore W2024585152C127313418 @default.
- W2024585152 hasConceptScore W2024585152C127413603 @default.