Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024589952> ?p ?o ?g. }
- W2024589952 endingPage "173" @default.
- W2024589952 startingPage "155" @default.
- W2024589952 abstract "We model a regression density flexibly so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends the existing models in two important ways. First, the components are allowed to be heteroscedastic regressions as the standard model with homoscedastic regressions can give a poor fit to heteroscedastic data, especially when the number of covariates is large. Furthermore, we typically need fewer components, which makes it easier to interpret the model and speeds up the computation. The second main extension is to introduce a novel variable selection prior into all the components of the model. The variable selection prior acts as a self-adjusting mechanism that prevents overfitting and makes it feasible to fit flexible high-dimensional surfaces. We use Bayesian inference and Markov Chain Monte Carlo methods to estimate the model. Simulated and real examples are used to show that the full generality of our model is required to fit a large class of densities, but also that special cases of the general model are interesting models for economic data." @default.
- W2024589952 created "2016-06-24" @default.
- W2024589952 creator A5003645757 @default.
- W2024589952 creator A5050445437 @default.
- W2024589952 creator A5051693933 @default.
- W2024589952 date "2009-12-01" @default.
- W2024589952 modified "2023-10-16" @default.
- W2024589952 title "Regression density estimation using smooth adaptive Gaussian mixtures" @default.
- W2024589952 cites W1486016120 @default.
- W2024589952 cites W1492534149 @default.
- W2024589952 cites W1507532849 @default.
- W2024589952 cites W1581352608 @default.
- W2024589952 cites W1967611219 @default.
- W2024589952 cites W1975839276 @default.
- W2024589952 cites W1988995432 @default.
- W2024589952 cites W2017791169 @default.
- W2024589952 cites W2020777793 @default.
- W2024589952 cites W2025653905 @default.
- W2024589952 cites W2035756456 @default.
- W2024589952 cites W2038885294 @default.
- W2024589952 cites W2051817458 @default.
- W2024589952 cites W2060624359 @default.
- W2024589952 cites W2061929874 @default.
- W2024589952 cites W2063188271 @default.
- W2024589952 cites W2068120653 @default.
- W2024589952 cites W2082630584 @default.
- W2024589952 cites W2117048993 @default.
- W2024589952 cites W2150884987 @default.
- W2024589952 cites W2162898443 @default.
- W2024589952 cites W2163696743 @default.
- W2024589952 cites W2166624680 @default.
- W2024589952 cites W2466198720 @default.
- W2024589952 cites W3125666236 @default.
- W2024589952 cites W3125841640 @default.
- W2024589952 cites W4230306435 @default.
- W2024589952 cites W4248663717 @default.
- W2024589952 cites W4248855525 @default.
- W2024589952 cites W4249506491 @default.
- W2024589952 cites W603679014 @default.
- W2024589952 doi "https://doi.org/10.1016/j.jeconom.2009.05.004" @default.
- W2024589952 hasPublicationYear "2009" @default.
- W2024589952 type Work @default.
- W2024589952 sameAs 2024589952 @default.
- W2024589952 citedByCount "75" @default.
- W2024589952 countsByYear W20245899522012 @default.
- W2024589952 countsByYear W20245899522013 @default.
- W2024589952 countsByYear W20245899522014 @default.
- W2024589952 countsByYear W20245899522015 @default.
- W2024589952 countsByYear W20245899522016 @default.
- W2024589952 countsByYear W20245899522017 @default.
- W2024589952 countsByYear W20245899522018 @default.
- W2024589952 countsByYear W20245899522019 @default.
- W2024589952 countsByYear W20245899522020 @default.
- W2024589952 countsByYear W20245899522021 @default.
- W2024589952 countsByYear W20245899522022 @default.
- W2024589952 countsByYear W20245899522023 @default.
- W2024589952 crossrefType "journal-article" @default.
- W2024589952 hasAuthorship W2024589952A5003645757 @default.
- W2024589952 hasAuthorship W2024589952A5050445437 @default.
- W2024589952 hasAuthorship W2024589952A5051693933 @default.
- W2024589952 hasBestOaLocation W20245899522 @default.
- W2024589952 hasConcept C101104100 @default.
- W2024589952 hasConcept C104409967 @default.
- W2024589952 hasConcept C105795698 @default.
- W2024589952 hasConcept C107673813 @default.
- W2024589952 hasConcept C111350023 @default.
- W2024589952 hasConcept C119043178 @default.
- W2024589952 hasConcept C149782125 @default.
- W2024589952 hasConcept C152877465 @default.
- W2024589952 hasConcept C154945302 @default.
- W2024589952 hasConcept C185429906 @default.
- W2024589952 hasConcept C189508267 @default.
- W2024589952 hasConcept C22019652 @default.
- W2024589952 hasConcept C33923547 @default.
- W2024589952 hasConcept C41008148 @default.
- W2024589952 hasConcept C50644808 @default.
- W2024589952 hasConcept C61224824 @default.
- W2024589952 hasConcept C93959086 @default.
- W2024589952 hasConceptScore W2024589952C101104100 @default.
- W2024589952 hasConceptScore W2024589952C104409967 @default.
- W2024589952 hasConceptScore W2024589952C105795698 @default.
- W2024589952 hasConceptScore W2024589952C107673813 @default.
- W2024589952 hasConceptScore W2024589952C111350023 @default.
- W2024589952 hasConceptScore W2024589952C119043178 @default.
- W2024589952 hasConceptScore W2024589952C149782125 @default.
- W2024589952 hasConceptScore W2024589952C152877465 @default.
- W2024589952 hasConceptScore W2024589952C154945302 @default.
- W2024589952 hasConceptScore W2024589952C185429906 @default.
- W2024589952 hasConceptScore W2024589952C189508267 @default.
- W2024589952 hasConceptScore W2024589952C22019652 @default.
- W2024589952 hasConceptScore W2024589952C33923547 @default.
- W2024589952 hasConceptScore W2024589952C41008148 @default.
- W2024589952 hasConceptScore W2024589952C50644808 @default.
- W2024589952 hasConceptScore W2024589952C61224824 @default.
- W2024589952 hasConceptScore W2024589952C93959086 @default.
- W2024589952 hasIssue "2" @default.
- W2024589952 hasLocation W20245899521 @default.
- W2024589952 hasLocation W20245899522 @default.