Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024596145> ?p ?o ?g. }
- W2024596145 endingPage "728" @default.
- W2024596145 startingPage "715" @default.
- W2024596145 abstract "In osteoarthritis (OA) a time or age dependent process leads to aberrant cartilage structure which is characterized by reduced number of chondrocytes, loss of existing cartilage extracellular matrix, the production of matrix with abnormal composition and pathologic matrix calcification. Because chondrocyte matrix synthesis and mineralization are modulated by the balance between ATP generation and consumption, the mechanism by which chondrocytes generate energy have been a topic of interest. The analysis of mitochondrial respiratory chain (MRC) activity in OA chondrocytes shows a significant decrease in complexes II and III compared to normal chondrocytes. On the other hand, mitochondrial mass is increased in OA, as demonstrated by a significant rise in CS activity. Furthermore, OA cells show a reduction in the mitochondrial membrane potential (Δψm) as demonstrated by using the fluorescent probe JC-1. OA cartilage contains high number of apoptotic chondrocytes, and mitochondria play a key role in apoptosis. Interestingly, OA cartilages show markedly elevated Bcl-2 and caspasa-3 expression. This expression is also correlated with chondrocyte apoptosis and OA lesions. The pathogenesis of OA includes elaboration of increased amounts of NO as a consequence of up-regulation of chondrocyte-inducible NO synthase induced by IL-1, TNF-α and other factors. NO reduces chondrocyte survival and induces cell death with morphologic changes characteristic of chondrocyte apoptosis. NO reduces the activity of complex IV and decreases the Δψm as measured as the ratio of red/green fluorescence. Furthermore, NO induces the mRNA expression of caspase-3 and -7, and it reduces the expression of mRNA bcl-2 and the bcl-2 protein synthesis. Some studies suggest that the chondrocyte mitochondria are specialized for calcium transport and are important in the calcification of the extracellular matrix. Mineral formation has been demonstrated in matrix vesicles (MV) and within mitochondria. Direct suppression of mitochondrial respiration promoted MV-mediated mineralization in chondrocytes. Regulation of MRC may be one of the signaling pathways by which NO modulates articular cartilage matrix biosynthesis and pathologic mineralization. After age 40, the incidence of OA in humans increases progressively with increasing age. Studies show a trend to statistic significance between the age and the reduction of complex I activity of human normal chondrocytes. However, the study of relation between age and Δψm in normal chondrocytes do not demonstrate any significant correlation. It has been reported that as the number of population doublings increased, mitochondrial DNA was degraded and the number of mitochondria per chondrocyte decline. One approach for determining the role of mitochondria in OA is to determine the effects of the MRC inhibition and to compare them with the findings in OA. Inhibition of MRC with antimycin prevents the normal ability of TGFβ to increase excretion of Pi, thereby worsening deposition of pathologic HA crystals. In chondrocytes, the inhibition of complex IV with NaN3 modified both the Δψm and the survival of cells inducing apoptosis. Inhibition of complex I with rotenone increases the expression and synthesis of Bcl-2 and Cox-2, both effects are similar effects to produced by IL-1 in human chondrocytes." @default.
- W2024596145 created "2016-06-24" @default.
- W2024596145 creator A5019811024 @default.
- W2024596145 creator A5057860306 @default.
- W2024596145 creator A5063703199 @default.
- W2024596145 date "2004-09-01" @default.
- W2024596145 modified "2023-10-05" @default.
- W2024596145 title "Mitochondrial dysfunction in osteoarthritis" @default.
- W2024596145 cites W1483751226 @default.
- W2024596145 cites W1501470257 @default.
- W2024596145 cites W1530516996 @default.
- W2024596145 cites W1541137078 @default.
- W2024596145 cites W1542080278 @default.
- W2024596145 cites W1603799464 @default.
- W2024596145 cites W1604084902 @default.
- W2024596145 cites W1723349763 @default.
- W2024596145 cites W1968112618 @default.
- W2024596145 cites W1975984591 @default.
- W2024596145 cites W1979684462 @default.
- W2024596145 cites W1981399177 @default.
- W2024596145 cites W1984449917 @default.
- W2024596145 cites W2011940076 @default.
- W2024596145 cites W2013395096 @default.
- W2024596145 cites W2019649192 @default.
- W2024596145 cites W2031592383 @default.
- W2024596145 cites W2031673412 @default.
- W2024596145 cites W2041831078 @default.
- W2024596145 cites W2052968052 @default.
- W2024596145 cites W2053792745 @default.
- W2024596145 cites W2055150344 @default.
- W2024596145 cites W2063002434 @default.
- W2024596145 cites W2074953517 @default.
- W2024596145 cites W2075978331 @default.
- W2024596145 cites W2081815997 @default.
- W2024596145 cites W2083104954 @default.
- W2024596145 cites W2086866915 @default.
- W2024596145 cites W2095168835 @default.
- W2024596145 cites W2098165430 @default.
- W2024596145 cites W2101861123 @default.
- W2024596145 cites W2103278260 @default.
- W2024596145 cites W2109914347 @default.
- W2024596145 cites W2113999599 @default.
- W2024596145 cites W2130866079 @default.
- W2024596145 cites W2135243174 @default.
- W2024596145 cites W2139075512 @default.
- W2024596145 cites W2145864210 @default.
- W2024596145 cites W2343137005 @default.
- W2024596145 cites W2394728401 @default.
- W2024596145 cites W2397789873 @default.
- W2024596145 cites W2400107839 @default.
- W2024596145 cites W2408870159 @default.
- W2024596145 cites W2409112698 @default.
- W2024596145 cites W2412886004 @default.
- W2024596145 cites W2412962636 @default.
- W2024596145 cites W2462249065 @default.
- W2024596145 cites W2968115092 @default.
- W2024596145 cites W4996342 @default.
- W2024596145 cites W601334014 @default.
- W2024596145 cites W618168218 @default.
- W2024596145 doi "https://doi.org/10.1016/j.mito.2004.07.022" @default.
- W2024596145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16120427" @default.
- W2024596145 hasPublicationYear "2004" @default.
- W2024596145 type Work @default.
- W2024596145 sameAs 2024596145 @default.
- W2024596145 citedByCount "141" @default.
- W2024596145 countsByYear W20245961452012 @default.
- W2024596145 countsByYear W20245961452013 @default.
- W2024596145 countsByYear W20245961452014 @default.
- W2024596145 countsByYear W20245961452015 @default.
- W2024596145 countsByYear W20245961452016 @default.
- W2024596145 countsByYear W20245961452017 @default.
- W2024596145 countsByYear W20245961452018 @default.
- W2024596145 countsByYear W20245961452019 @default.
- W2024596145 countsByYear W20245961452020 @default.
- W2024596145 countsByYear W20245961452021 @default.
- W2024596145 countsByYear W20245961452022 @default.
- W2024596145 countsByYear W20245961452023 @default.
- W2024596145 crossrefType "journal-article" @default.
- W2024596145 hasAuthorship W2024596145A5019811024 @default.
- W2024596145 hasAuthorship W2024596145A5057860306 @default.
- W2024596145 hasAuthorship W2024596145A5063703199 @default.
- W2024596145 hasConcept C105702510 @default.
- W2024596145 hasConcept C142724271 @default.
- W2024596145 hasConcept C185592680 @default.
- W2024596145 hasConcept C189165786 @default.
- W2024596145 hasConcept C190283241 @default.
- W2024596145 hasConcept C204787440 @default.
- W2024596145 hasConcept C2776164576 @default.
- W2024596145 hasConcept C2780550940 @default.
- W2024596145 hasConcept C2781403057 @default.
- W2024596145 hasConcept C28859421 @default.
- W2024596145 hasConcept C55493867 @default.
- W2024596145 hasConcept C71924100 @default.
- W2024596145 hasConcept C86803240 @default.
- W2024596145 hasConcept C95444343 @default.
- W2024596145 hasConceptScore W2024596145C105702510 @default.
- W2024596145 hasConceptScore W2024596145C142724271 @default.
- W2024596145 hasConceptScore W2024596145C185592680 @default.