Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024653992> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2024653992 endingPage "1203" @default.
- W2024653992 startingPage "1195" @default.
- W2024653992 abstract "The properties of steels depend in a complex way on their composition and heat treatment and neural networks have therefore recently been widely used for capturing these relationships. Two different methods of reducing the network connectivity, viz a pruning algorithm and a multi-objective predator prey genetic algorithm, have been used for neural network modeling of the mechanical properties of high strength steels, so that relevant connections within the networks are revealed. This provides important understanding on the variables and their relationship with mechanical properties. In the pruning algorithm the lower layer of the network is gradually reduced by removing less significant connections. In the predator prey algorithm, a genetic algorithm based multi-objective optimization technique is used to train the neural network and a Pareto front is developed by minimizing the training error along with the network size. The results of both techniques reveal that they can extract more knowledge from the data, which is difficult to obtain from conventional neural models. The relative relevance of the composition and processing parameters detected could be used for designing steel with tailored property balance. The results developed by the two techniques are also found to be comparable." @default.
- W2024653992 created "2016-06-24" @default.
- W2024653992 creator A5018063387 @default.
- W2024653992 creator A5022422109 @default.
- W2024653992 creator A5027434108 @default.
- W2024653992 creator A5048090127 @default.
- W2024653992 creator A5051405132 @default.
- W2024653992 date "2007-01-01" @default.
- W2024653992 modified "2023-10-13" @default.
- W2024653992 title "Designing High Strength Multi-phase Steel for Improved Strength–Ductility Balance Using Neural Networks and Multi-objective Genetic Algorithms" @default.
- W2024653992 cites W1517193156 @default.
- W2024653992 cites W1965720900 @default.
- W2024653992 cites W1969336179 @default.
- W2024653992 cites W1974203073 @default.
- W2024653992 cites W1978006517 @default.
- W2024653992 cites W1979860311 @default.
- W2024653992 cites W1987084738 @default.
- W2024653992 cites W1989520734 @default.
- W2024653992 cites W1990017667 @default.
- W2024653992 cites W1995672548 @default.
- W2024653992 cites W2044530447 @default.
- W2024653992 cites W2071026144 @default.
- W2024653992 cites W2105192472 @default.
- W2024653992 cites W2475252863 @default.
- W2024653992 cites W4292408320 @default.
- W2024653992 doi "https://doi.org/10.2355/isijinternational.47.1195" @default.
- W2024653992 hasPublicationYear "2007" @default.
- W2024653992 type Work @default.
- W2024653992 sameAs 2024653992 @default.
- W2024653992 citedByCount "48" @default.
- W2024653992 countsByYear W20246539922012 @default.
- W2024653992 countsByYear W20246539922013 @default.
- W2024653992 countsByYear W20246539922014 @default.
- W2024653992 countsByYear W20246539922015 @default.
- W2024653992 countsByYear W20246539922016 @default.
- W2024653992 countsByYear W20246539922018 @default.
- W2024653992 countsByYear W20246539922020 @default.
- W2024653992 countsByYear W20246539922021 @default.
- W2024653992 countsByYear W20246539922022 @default.
- W2024653992 crossrefType "journal-article" @default.
- W2024653992 hasAuthorship W2024653992A5018063387 @default.
- W2024653992 hasAuthorship W2024653992A5022422109 @default.
- W2024653992 hasAuthorship W2024653992A5027434108 @default.
- W2024653992 hasAuthorship W2024653992A5048090127 @default.
- W2024653992 hasAuthorship W2024653992A5051405132 @default.
- W2024653992 hasBestOaLocation W20246539921 @default.
- W2024653992 hasConcept C108010975 @default.
- W2024653992 hasConcept C11413529 @default.
- W2024653992 hasConcept C119857082 @default.
- W2024653992 hasConcept C127413603 @default.
- W2024653992 hasConcept C149912024 @default.
- W2024653992 hasConcept C154945302 @default.
- W2024653992 hasConcept C159985019 @default.
- W2024653992 hasConcept C192562407 @default.
- W2024653992 hasConcept C2776512210 @default.
- W2024653992 hasConcept C2780242121 @default.
- W2024653992 hasConcept C41008148 @default.
- W2024653992 hasConcept C50644808 @default.
- W2024653992 hasConcept C6557445 @default.
- W2024653992 hasConcept C78519656 @default.
- W2024653992 hasConcept C86803240 @default.
- W2024653992 hasConcept C8880873 @default.
- W2024653992 hasConceptScore W2024653992C108010975 @default.
- W2024653992 hasConceptScore W2024653992C11413529 @default.
- W2024653992 hasConceptScore W2024653992C119857082 @default.
- W2024653992 hasConceptScore W2024653992C127413603 @default.
- W2024653992 hasConceptScore W2024653992C149912024 @default.
- W2024653992 hasConceptScore W2024653992C154945302 @default.
- W2024653992 hasConceptScore W2024653992C159985019 @default.
- W2024653992 hasConceptScore W2024653992C192562407 @default.
- W2024653992 hasConceptScore W2024653992C2776512210 @default.
- W2024653992 hasConceptScore W2024653992C2780242121 @default.
- W2024653992 hasConceptScore W2024653992C41008148 @default.
- W2024653992 hasConceptScore W2024653992C50644808 @default.
- W2024653992 hasConceptScore W2024653992C6557445 @default.
- W2024653992 hasConceptScore W2024653992C78519656 @default.
- W2024653992 hasConceptScore W2024653992C86803240 @default.
- W2024653992 hasConceptScore W2024653992C8880873 @default.
- W2024653992 hasIssue "8" @default.
- W2024653992 hasLocation W20246539921 @default.
- W2024653992 hasOpenAccess W2024653992 @default.
- W2024653992 hasPrimaryLocation W20246539921 @default.
- W2024653992 hasRelatedWork W1490470283 @default.
- W2024653992 hasRelatedWork W2024653992 @default.
- W2024653992 hasRelatedWork W2275666876 @default.
- W2024653992 hasRelatedWork W2326122716 @default.
- W2024653992 hasRelatedWork W2356957943 @default.
- W2024653992 hasRelatedWork W2372415543 @default.
- W2024653992 hasRelatedWork W2386058197 @default.
- W2024653992 hasRelatedWork W2386387936 @default.
- W2024653992 hasRelatedWork W2392110728 @default.
- W2024653992 hasRelatedWork W3047144510 @default.
- W2024653992 hasVolume "47" @default.
- W2024653992 isParatext "false" @default.
- W2024653992 isRetracted "false" @default.
- W2024653992 magId "2024653992" @default.
- W2024653992 workType "article" @default.