Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024656818> ?p ?o ?g. }
- W2024656818 endingPage "5925" @default.
- W2024656818 startingPage "5906" @default.
- W2024656818 abstract "The diffusive behavior of argon in quartz was investigated with three analytical depth profiling methods: Rutherford Backscattering Spectroscopy (RBS), 213 nm laser ablation, and 193 nm (Excimer) laser ablation on the same set of experimental samples. The integration of multiple depth profiling methods, each with different spatial resolution and sensitivity, allows for the cross-checking of methods where data ranges coincide. The use of multiple methods also allows for exploration of diffusive phenomena over multiple length-scales. Samples included both natural clear rock crystal quartz and synthetic citrine quartz. Laser analysis of clear quartz was compromised by poor coupling with the laser, whereas the citrine quartz was more easily analyzed (particularly with 193 nm laser). Diffusivity measured by both RBS and 193 nm laser ablation in the outermost 0.3 μm region of citrine quartz are self-consistent and in agreement with previously published RBS data on other quartz samples (including the clear quartz measured by RBS in this study). Apparent solubilities (extrapolated surface concentrations) for citrine quartz are in good agreement between RBS, 213 nm, and 193 nm laser analyses. Deeper penetration of argon measured up to 100 μm depth with the 213 nm laser reveal contributions of a second, faster diffusive pathway, effective in transporting much lower concentrations of argon into the crystal interiors of both clear and citrine quartz. By assuming such deep diffusion is dominated by fast pathways and approximating them as a network of planar features, the net diffusive uptake can be modeled and quantified with the Whipple–LeClaire equation, yielding δDb values of 1.32 × 10−14 to 9.1 × 10−17 cm3/s. While solubility values from the measured profiles confirm suggestions that quartz has a large capacity for argon uptake (making it a potentially important sink for argon in the crust), the slow rate of lattice diffusion may limit its capability to take up argon in shorter lived geologic environments and in experiments. In such shorter-lived systems, bulk argon diffusive uptake will be dominated by the fast pathway and the quartz lattice (including natural isolated defects that may also be storing argon) may never reach its equilibrium capacity." @default.
- W2024656818 created "2016-06-24" @default.
- W2024656818 creator A5003607022 @default.
- W2024656818 creator A5009443774 @default.
- W2024656818 creator A5069157986 @default.
- W2024656818 creator A5073233344 @default.
- W2024656818 creator A5073438865 @default.
- W2024656818 creator A5076621150 @default.
- W2024656818 date "2010-10-01" @default.
- W2024656818 modified "2023-09-23" @default.
- W2024656818 title "Two diffusion pathways in quartz: A combined UV-laser and RBS study" @default.
- W2024656818 cites W1964321999 @default.
- W2024656818 cites W1966426258 @default.
- W2024656818 cites W1972684097 @default.
- W2024656818 cites W1973239449 @default.
- W2024656818 cites W1975241458 @default.
- W2024656818 cites W1977633453 @default.
- W2024656818 cites W1977893035 @default.
- W2024656818 cites W1981116662 @default.
- W2024656818 cites W1981210002 @default.
- W2024656818 cites W1984452873 @default.
- W2024656818 cites W1987627897 @default.
- W2024656818 cites W1988967014 @default.
- W2024656818 cites W1996336236 @default.
- W2024656818 cites W1996763273 @default.
- W2024656818 cites W2000277662 @default.
- W2024656818 cites W2001077046 @default.
- W2024656818 cites W2002320608 @default.
- W2024656818 cites W2007074553 @default.
- W2024656818 cites W2007338984 @default.
- W2024656818 cites W2007666697 @default.
- W2024656818 cites W2008491057 @default.
- W2024656818 cites W2009003566 @default.
- W2024656818 cites W2011196362 @default.
- W2024656818 cites W2013510455 @default.
- W2024656818 cites W2019167857 @default.
- W2024656818 cites W2026454384 @default.
- W2024656818 cites W2030600140 @default.
- W2024656818 cites W2032531391 @default.
- W2024656818 cites W2032803594 @default.
- W2024656818 cites W2033178018 @default.
- W2024656818 cites W2038997847 @default.
- W2024656818 cites W2040262423 @default.
- W2024656818 cites W2041952691 @default.
- W2024656818 cites W2045962992 @default.
- W2024656818 cites W2049639926 @default.
- W2024656818 cites W2049829679 @default.
- W2024656818 cites W2052022364 @default.
- W2024656818 cites W2066293722 @default.
- W2024656818 cites W2066890973 @default.
- W2024656818 cites W2072520525 @default.
- W2024656818 cites W2073811384 @default.
- W2024656818 cites W2078558273 @default.
- W2024656818 cites W2083754373 @default.
- W2024656818 cites W2084209078 @default.
- W2024656818 cites W2086025924 @default.
- W2024656818 cites W2100867694 @default.
- W2024656818 cites W2132364829 @default.
- W2024656818 cites W2149034123 @default.
- W2024656818 cites W2166090574 @default.
- W2024656818 cites W2166833293 @default.
- W2024656818 doi "https://doi.org/10.1016/j.gca.2010.07.014" @default.
- W2024656818 hasPublicationYear "2010" @default.
- W2024656818 type Work @default.
- W2024656818 sameAs 2024656818 @default.
- W2024656818 citedByCount "24" @default.
- W2024656818 countsByYear W20246568182012 @default.
- W2024656818 countsByYear W20246568182013 @default.
- W2024656818 countsByYear W20246568182014 @default.
- W2024656818 countsByYear W20246568182015 @default.
- W2024656818 countsByYear W20246568182018 @default.
- W2024656818 countsByYear W20246568182019 @default.
- W2024656818 countsByYear W20246568182020 @default.
- W2024656818 crossrefType "journal-article" @default.
- W2024656818 hasAuthorship W2024656818A5003607022 @default.
- W2024656818 hasAuthorship W2024656818A5009443774 @default.
- W2024656818 hasAuthorship W2024656818A5069157986 @default.
- W2024656818 hasAuthorship W2024656818A5073233344 @default.
- W2024656818 hasAuthorship W2024656818A5073438865 @default.
- W2024656818 hasAuthorship W2024656818A5076621150 @default.
- W2024656818 hasBestOaLocation W20246568182 @default.
- W2024656818 hasConcept C113196181 @default.
- W2024656818 hasConcept C120665830 @default.
- W2024656818 hasConcept C121332964 @default.
- W2024656818 hasConcept C159985019 @default.
- W2024656818 hasConcept C178790620 @default.
- W2024656818 hasConcept C185592680 @default.
- W2024656818 hasConcept C192562407 @default.
- W2024656818 hasConcept C193493375 @default.
- W2024656818 hasConcept C199360897 @default.
- W2024656818 hasConcept C2779188808 @default.
- W2024656818 hasConcept C2779870107 @default.
- W2024656818 hasConcept C2780477314 @default.
- W2024656818 hasConcept C2781285689 @default.
- W2024656818 hasConcept C37668627 @default.
- W2024656818 hasConcept C41008148 @default.
- W2024656818 hasConcept C43617362 @default.
- W2024656818 hasConcept C520434653 @default.