Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024660167> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2024660167 abstract "The application of independent component analysis (ICA) to remotely sensed image classification has been studied recently. It is particularly useful for classifying objects with unknown spectral signatures in an unknown image scene, i.e., unsupervised classification. Since the weight matrix in ICA is a square matrix for the purpose of mathematical tractability, the number of objects that can be classified is equal to the data dimensionality, i.e., the number of spectral bands. When the number of spectral bands is very small (e.g., 3-band CIR photograph and 6-band Landsat image), it is impossible to classify all the different objects present in an image scene with the original data. In order to solve this problem, we present a data dimensionality expansion technique to generate artificial bands. Its basic idea is to use nonlinear functions to capture the second and high order correlations between original bands, which can provide additional information for detecting and classifying more objects. The results from such nonlinear band generation approach are compared with a linear band generation method using cubic spline interpolation of pixel spectral signatures. The experiments demonstrate that nonlinear band generation approach can significantly improve unsupervised classification accuracy, while linear band generation method cannot since no new information can be provided." @default.
- W2024660167 created "2016-06-24" @default.
- W2024660167 creator A5018239321 @default.
- W2024660167 creator A5033017179 @default.
- W2024660167 creator A5064824381 @default.
- W2024660167 creator A5091644560 @default.
- W2024660167 date "2004-04-12" @default.
- W2024660167 modified "2023-10-16" @default.
- W2024660167 title "Independent component analysis for remotely sensed image classification with limited data dimensionality" @default.
- W2024660167 cites W1508246414 @default.
- W2024660167 cites W1548802052 @default.
- W2024660167 cites W1966798775 @default.
- W2024660167 cites W2003410902 @default.
- W2024660167 cites W2025871082 @default.
- W2024660167 cites W2033873581 @default.
- W2024660167 cites W2046719451 @default.
- W2024660167 cites W2060384859 @default.
- W2024660167 cites W2124757684 @default.
- W2024660167 cites W2126045092 @default.
- W2024660167 cites W2137870541 @default.
- W2024660167 doi "https://doi.org/10.1117/12.541924" @default.
- W2024660167 hasPublicationYear "2004" @default.
- W2024660167 type Work @default.
- W2024660167 sameAs 2024660167 @default.
- W2024660167 citedByCount "0" @default.
- W2024660167 crossrefType "proceedings-article" @default.
- W2024660167 hasAuthorship W2024660167A5018239321 @default.
- W2024660167 hasAuthorship W2024660167A5033017179 @default.
- W2024660167 hasAuthorship W2024660167A5064824381 @default.
- W2024660167 hasAuthorship W2024660167A5091644560 @default.
- W2024660167 hasConcept C106131492 @default.
- W2024660167 hasConcept C111030470 @default.
- W2024660167 hasConcept C114700698 @default.
- W2024660167 hasConcept C115961682 @default.
- W2024660167 hasConcept C137800194 @default.
- W2024660167 hasConcept C153180895 @default.
- W2024660167 hasConcept C154945302 @default.
- W2024660167 hasConcept C160633673 @default.
- W2024660167 hasConcept C205649164 @default.
- W2024660167 hasConcept C27438332 @default.
- W2024660167 hasConcept C31972630 @default.
- W2024660167 hasConcept C33923547 @default.
- W2024660167 hasConcept C41008148 @default.
- W2024660167 hasConcept C51432778 @default.
- W2024660167 hasConcept C62649853 @default.
- W2024660167 hasConceptScore W2024660167C106131492 @default.
- W2024660167 hasConceptScore W2024660167C111030470 @default.
- W2024660167 hasConceptScore W2024660167C114700698 @default.
- W2024660167 hasConceptScore W2024660167C115961682 @default.
- W2024660167 hasConceptScore W2024660167C137800194 @default.
- W2024660167 hasConceptScore W2024660167C153180895 @default.
- W2024660167 hasConceptScore W2024660167C154945302 @default.
- W2024660167 hasConceptScore W2024660167C160633673 @default.
- W2024660167 hasConceptScore W2024660167C205649164 @default.
- W2024660167 hasConceptScore W2024660167C27438332 @default.
- W2024660167 hasConceptScore W2024660167C31972630 @default.
- W2024660167 hasConceptScore W2024660167C33923547 @default.
- W2024660167 hasConceptScore W2024660167C41008148 @default.
- W2024660167 hasConceptScore W2024660167C51432778 @default.
- W2024660167 hasConceptScore W2024660167C62649853 @default.
- W2024660167 hasLocation W20246601671 @default.
- W2024660167 hasOpenAccess W2024660167 @default.
- W2024660167 hasPrimaryLocation W20246601671 @default.
- W2024660167 hasRelatedWork W1918750390 @default.
- W2024660167 hasRelatedWork W1977875519 @default.
- W2024660167 hasRelatedWork W2108218391 @default.
- W2024660167 hasRelatedWork W2130281184 @default.
- W2024660167 hasRelatedWork W2134786086 @default.
- W2024660167 hasRelatedWork W2353481994 @default.
- W2024660167 hasRelatedWork W2384185843 @default.
- W2024660167 hasRelatedWork W2790935876 @default.
- W2024660167 hasRelatedWork W3045294822 @default.
- W2024660167 hasRelatedWork W2788651595 @default.
- W2024660167 isParatext "false" @default.
- W2024660167 isRetracted "false" @default.
- W2024660167 magId "2024660167" @default.
- W2024660167 workType "article" @default.