Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024676566> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2024676566 endingPage "300" @default.
- W2024676566 startingPage "257" @default.
- W2024676566 abstract "Wireless sensor networks (WSN) have shown their potentials in various applications, which bring a lot of benefits to users from different working areas. However, due to the diversity of the deployed environments and resource constraints, it is difficult to predict the performance of a topology. Besides the connectivity, coverage, cost, network longevity and service quality should all be considered during the planning procedure. Therefore, efficiently planning a reliable WSN is a challenging task, which requires designers coping with comprehensive and interdisciplinary knowledge. A WSN planning method is proposed in this work to tackle the above mentioned challenges and efficiently deploying reliable WSNs. First of all, the above mentioned metrics are modeled more comprehensively and practically compared with other works. Especially 3D ray tracing method is used to model the radio link and sensing signal, which are sensitive to the obstruction of obstacles; network routing is constructed by using AODV protocol; the network longevity, packet delay and packet drop rate are obtained via simulating practical events in WSNet simulator, which to the best of our knowledge, is the first time that network simulator is involved in a planning algorithm. Moreover, a multi-objective optimization algorithm is developed to cater for the characteristics of WSNs. Network size is changeable during evolution, meanwhile the crossovers and mutations are limited by certain constraints to eliminate invalid modifications and improve the computation efficiency. The capability of providing multiple optimized solutions simultaneously allows users making their own decisions, and the results are more comprehensive optimized compared with other state-of-the-art algorithms. Practical WSN deployments are also realized for both indoor and outdoor environments and the measurements coincident well with the generated optimized topologies, which prove the efficiency and reliability of the proposed algorithm." @default.
- W2024676566 created "2016-06-24" @default.
- W2024676566 creator A5012981301 @default.
- W2024676566 creator A5018896607 @default.
- W2024676566 creator A5022228753 @default.
- W2024676566 creator A5025418947 @default.
- W2024676566 date "2014-08-27" @default.
- W2024676566 modified "2023-09-30" @default.
- W2024676566 title "Modelling and planning reliable wireless sensor networks based on multi-objective optimization genetic algorithm with changeable length" @default.
- W2024676566 cites W1512222363 @default.
- W2024676566 cites W1804891470 @default.
- W2024676566 cites W1976380647 @default.
- W2024676566 cites W1977117974 @default.
- W2024676566 cites W1986354233 @default.
- W2024676566 cites W2016458135 @default.
- W2024676566 cites W2046038897 @default.
- W2024676566 cites W2052555478 @default.
- W2024676566 cites W2061592536 @default.
- W2024676566 cites W2101226435 @default.
- W2024676566 cites W2102258543 @default.
- W2024676566 cites W2109785846 @default.
- W2024676566 cites W2115880660 @default.
- W2024676566 cites W2126105956 @default.
- W2024676566 cites W2129005103 @default.
- W2024676566 cites W2129782150 @default.
- W2024676566 cites W2133361511 @default.
- W2024676566 cites W2137486085 @default.
- W2024676566 cites W2138238927 @default.
- W2024676566 cites W2145098341 @default.
- W2024676566 cites W2165051662 @default.
- W2024676566 cites W2181717997 @default.
- W2024676566 cites W3143762821 @default.
- W2024676566 cites W4245685877 @default.
- W2024676566 cites W4252939633 @default.
- W2024676566 doi "https://doi.org/10.1007/s10732-014-9261-2" @default.
- W2024676566 hasPublicationYear "2014" @default.
- W2024676566 type Work @default.
- W2024676566 sameAs 2024676566 @default.
- W2024676566 citedByCount "18" @default.
- W2024676566 countsByYear W20246765662014 @default.
- W2024676566 countsByYear W20246765662015 @default.
- W2024676566 countsByYear W20246765662016 @default.
- W2024676566 countsByYear W20246765662017 @default.
- W2024676566 countsByYear W20246765662018 @default.
- W2024676566 countsByYear W20246765662019 @default.
- W2024676566 countsByYear W20246765662021 @default.
- W2024676566 countsByYear W20246765662022 @default.
- W2024676566 crossrefType "journal-article" @default.
- W2024676566 hasAuthorship W2024676566A5012981301 @default.
- W2024676566 hasAuthorship W2024676566A5018896607 @default.
- W2024676566 hasAuthorship W2024676566A5022228753 @default.
- W2024676566 hasAuthorship W2024676566A5025418947 @default.
- W2024676566 hasBestOaLocation W20246765662 @default.
- W2024676566 hasConcept C119857082 @default.
- W2024676566 hasConcept C120314980 @default.
- W2024676566 hasConcept C158379750 @default.
- W2024676566 hasConcept C24590314 @default.
- W2024676566 hasConcept C31258907 @default.
- W2024676566 hasConcept C41008148 @default.
- W2024676566 hasConcept C5119721 @default.
- W2024676566 hasConcept C79403827 @default.
- W2024676566 hasConcept C8880873 @default.
- W2024676566 hasConceptScore W2024676566C119857082 @default.
- W2024676566 hasConceptScore W2024676566C120314980 @default.
- W2024676566 hasConceptScore W2024676566C158379750 @default.
- W2024676566 hasConceptScore W2024676566C24590314 @default.
- W2024676566 hasConceptScore W2024676566C31258907 @default.
- W2024676566 hasConceptScore W2024676566C41008148 @default.
- W2024676566 hasConceptScore W2024676566C5119721 @default.
- W2024676566 hasConceptScore W2024676566C79403827 @default.
- W2024676566 hasConceptScore W2024676566C8880873 @default.
- W2024676566 hasIssue "2" @default.
- W2024676566 hasLocation W20246765661 @default.
- W2024676566 hasLocation W20246765662 @default.
- W2024676566 hasOpenAccess W2024676566 @default.
- W2024676566 hasPrimaryLocation W20246765661 @default.
- W2024676566 hasRelatedWork W2078600672 @default.
- W2024676566 hasRelatedWork W2130966263 @default.
- W2024676566 hasRelatedWork W2143725735 @default.
- W2024676566 hasRelatedWork W2145745943 @default.
- W2024676566 hasRelatedWork W2350737986 @default.
- W2024676566 hasRelatedWork W2731784717 @default.
- W2024676566 hasRelatedWork W3012256004 @default.
- W2024676566 hasRelatedWork W3137670215 @default.
- W2024676566 hasRelatedWork W2185272054 @default.
- W2024676566 hasRelatedWork W2611314012 @default.
- W2024676566 hasVolume "21" @default.
- W2024676566 isParatext "false" @default.
- W2024676566 isRetracted "false" @default.
- W2024676566 magId "2024676566" @default.
- W2024676566 workType "article" @default.