Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024677911> ?p ?o ?g. }
- W2024677911 endingPage "921" @default.
- W2024677911 startingPage "910" @default.
- W2024677911 abstract "This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach." @default.
- W2024677911 created "2016-06-24" @default.
- W2024677911 creator A5013219172 @default.
- W2024677911 creator A5020522846 @default.
- W2024677911 creator A5061239630 @default.
- W2024677911 creator A5067652312 @default.
- W2024677911 date "2014-06-01" @default.
- W2024677911 modified "2023-10-16" @default.
- W2024677911 title "Adaptive Neural Network Output Feedback Control for Stochastic Nonlinear Systems With Unknown Dead-Zone and Unmodeled Dynamics" @default.
- W2024677911 cites W1967050435 @default.
- W2024677911 cites W1968464152 @default.
- W2024677911 cites W1970068620 @default.
- W2024677911 cites W1972891981 @default.
- W2024677911 cites W1982132986 @default.
- W2024677911 cites W1990067632 @default.
- W2024677911 cites W1994507996 @default.
- W2024677911 cites W1998433168 @default.
- W2024677911 cites W2002443265 @default.
- W2024677911 cites W2014729448 @default.
- W2024677911 cites W2053860764 @default.
- W2024677911 cites W2084729396 @default.
- W2024677911 cites W2091919425 @default.
- W2024677911 cites W2096219490 @default.
- W2024677911 cites W2099378455 @default.
- W2024677911 cites W2102844581 @default.
- W2024677911 cites W2102934031 @default.
- W2024677911 cites W2103860904 @default.
- W2024677911 cites W2106071123 @default.
- W2024677911 cites W2108953054 @default.
- W2024677911 cites W2110638818 @default.
- W2024677911 cites W2114847465 @default.
- W2024677911 cites W2115308069 @default.
- W2024677911 cites W2120141422 @default.
- W2024677911 cites W2122594276 @default.
- W2024677911 cites W2122836694 @default.
- W2024677911 cites W2122995702 @default.
- W2024677911 cites W2123905768 @default.
- W2024677911 cites W2131073094 @default.
- W2024677911 cites W2133337272 @default.
- W2024677911 cites W2137320068 @default.
- W2024677911 cites W2142129363 @default.
- W2024677911 cites W2142148039 @default.
- W2024677911 cites W2143935924 @default.
- W2024677911 cites W2145202608 @default.
- W2024677911 cites W2154174009 @default.
- W2024677911 cites W2155400196 @default.
- W2024677911 cites W2155947439 @default.
- W2024677911 cites W2158137022 @default.
- W2024677911 cites W2159130301 @default.
- W2024677911 cites W2160917764 @default.
- W2024677911 cites W2166778519 @default.
- W2024677911 cites W2566491579 @default.
- W2024677911 doi "https://doi.org/10.1109/tcyb.2013.2276043" @default.
- W2024677911 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24013830" @default.
- W2024677911 hasPublicationYear "2014" @default.
- W2024677911 type Work @default.
- W2024677911 sameAs 2024677911 @default.
- W2024677911 citedByCount "166" @default.
- W2024677911 countsByYear W20246779112014 @default.
- W2024677911 countsByYear W20246779112015 @default.
- W2024677911 countsByYear W20246779112016 @default.
- W2024677911 countsByYear W20246779112017 @default.
- W2024677911 countsByYear W20246779112018 @default.
- W2024677911 countsByYear W20246779112019 @default.
- W2024677911 countsByYear W20246779112020 @default.
- W2024677911 countsByYear W20246779112021 @default.
- W2024677911 countsByYear W20246779112022 @default.
- W2024677911 countsByYear W20246779112023 @default.
- W2024677911 crossrefType "journal-article" @default.
- W2024677911 hasAuthorship W2024677911A5013219172 @default.
- W2024677911 hasAuthorship W2024677911A5020522846 @default.
- W2024677911 hasAuthorship W2024677911A5061239630 @default.
- W2024677911 hasAuthorship W2024677911A5067652312 @default.
- W2024677911 hasConcept C104317684 @default.
- W2024677911 hasConcept C107464732 @default.
- W2024677911 hasConcept C111368507 @default.
- W2024677911 hasConcept C121047784 @default.
- W2024677911 hasConcept C121332964 @default.
- W2024677911 hasConcept C127313418 @default.
- W2024677911 hasConcept C134306372 @default.
- W2024677911 hasConcept C154945302 @default.
- W2024677911 hasConcept C158622935 @default.
- W2024677911 hasConcept C185592680 @default.
- W2024677911 hasConcept C2775924081 @default.
- W2024677911 hasConcept C2780704645 @default.
- W2024677911 hasConcept C3031470 @default.
- W2024677911 hasConcept C33923547 @default.
- W2024677911 hasConcept C34388435 @default.
- W2024677911 hasConcept C41008148 @default.
- W2024677911 hasConcept C47446073 @default.
- W2024677911 hasConcept C50644808 @default.
- W2024677911 hasConcept C55493867 @default.
- W2024677911 hasConcept C62520636 @default.
- W2024677911 hasConcept C63479239 @default.
- W2024677911 hasConcept C63840607 @default.
- W2024677911 hasConcept C72218879 @default.
- W2024677911 hasConceptScore W2024677911C104317684 @default.
- W2024677911 hasConceptScore W2024677911C107464732 @default.